Epidemiological models have provided valuable information for the outlook of COVID-19 pandemic and relative impact of different mitigation scenarios. However, more accurate forecasts are often needed at near term for planning and staffing. We present our early results from a systemic analysis of short-term adjustment of epidemiological modeling of COVID 19 pandemic in US during March-April 2020. Our analysis includes the importance of various types of features for short term adjustment of the predictions. In addition, we explore the potential of data augmentation to address the data limitation for an emerging pandemic. Following published literature, we employ data augmentation via clustering of regions and evaluate a number of clustering strategies to identify early patterns from the data.
From our early analysis, we used CovidActNow as our underlying epidemiological model and found that the most impactful features for the one-day prediction horizon are population density, workers in commuting flow, number of deaths in the day prior to prediction date, and the autoregressive features of new COVID-19 cases from three previous dates of the prediction. Interestingly, we also found that counties clustered with New York County resulted in best preforming model with maximum of R2= 0.90 and minimum of R2= 0.85 for state-based and COVID-based clustering strategy, respectively.
Multiple efforts to model the epidemiology of SARS-CoV-2 have recently been launched in support of public health response at the national, state, and county levels. While the pandemic is global, the dynamics of this infectious disease varies with geography, local policies, and local variations in demographics. An underlying assumption of most infectious disease compartment modeling is that of a well mixed population at the resolution of the areas being modeled. The implicit need to model at fine spatial resolution is impeded by the quality of ground truth data for fine scale administrative subdivisions. To understand the trade-offs and benefits of such modeling as a function of scale, we compare the predictive performance of a SARS-CoV-2 modeling at the county, county cluster, and state level for the entire United States. Our results demonstrate that accurate prediction at the county level requires hyper-local modeling with county resolution. State level modeling does not accurately predict community spread in smaller sub-regions because state populations are not well mixed, resulting in large prediction errors. As an important use case, leveraging high resolution modeling with public health data and admissions data from Hillsborough County Florida, we performed weekly forecasts of both hospital admission and ICU bed demand for the county. The repeated forecasts between March and August 2020 were used to develop accurate resource allocation plans for Tampa General Hospital.2010 MSC92-D30, 91-C20
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.