Background: Candida is the leading cause of vaginitis, and 75% of women have at least one episode of infection in their lives, with pregnancy being a predisposing factor. If left untreated, vulvovaginal candidiasis (VVC) can lead to chorioamnionitis with subsequent abortion, prematurity and congenital infection of the neonate. We aimed to determine the prevalence of VVC, identify the recent and most frequently occurring species of Candida in pregnant women, and determine the most effective antifungal drug of choice for treatment. Method: A prospective cross-sectional study in which 176 high vaginal swab samples of consented pregnant women visiting the antenatal clinic from February 2018 to April 2018 were subjected to direct gram smear and culture for Candida isolation. Candida isolates were identified using a germ tube test and HiCrome Candida differential agar. Candida isolates were then subjected to a disk diffusion method using fluconazole (25 μg), nystatin (100 units), and voriconazole (1 μg) on Mueller-Hinton agar supplemented with 2% (w/v) glucose and 0.5 μg/ml methylene blue dye to determine the susceptibility pattern as per the guidelines of the Clinical Laboratory Standard Institute (CLSI). Chi-square analysis was used to ascertain the significant association of participants' sociodemographics and clinical presentations to VVC. A univariate logistic regression model was used to identify potential risk factors of VVC.
Plant recovery from viral infection is characterized by initial severe systemic symptoms which progressively decrease, leading to reduced symptoms or symptomless leaves at the apices. A key feature to plant recovery from invading nucleic acids such as viruses is the degree of the host's initial basal immunity response. We review current links between RNA silencing, recovery and tolerance, and present a model in which, in addition to regulation of resistance (R) and other defence-related genes by RNA silencing, viral infections incite perturbations of the host physiological state that trigger reprogramming of host responses to by-pass severe symptom development, leading to partial or complete recovery. Recovery, in particular in perennial hosts, may trigger tolerance or virus accommodation. We discuss evidence suggesting that plant viruses can avoid total clearance but persistently replicate at low levels, thereby modulating the host transcriptome response which minimizes fitness cost and triggers recovery from viral-symptoms. In some cases a susceptible host may fail to recover from initial viral systemic symptoms, yet, accommodates the persistent virus throughout the life span, a phenomenon herein referred to as non-recovery accommodation, which differs from tolerance in that there is no distinct recovery phase, and differs from susceptibility in that the host is not killed. Recent advances in plant recovery from virus-induced symptoms involving host transcriptome reprogramming are discussed.
Consumption of bamboo species with high level of total cyanogenic content (TCC) in Asia by many ethnic groups is significantly associated with food poisoning and occasionally Konzo (a neurological disorder). Adequate characterization of edible bamboo species with low level of TCC and high nutritious attributes is required for consumer's safety as well as for the conservation of the gene pool. Here, we employed morphological descriptors, atomic absorption spectrophotometer, RAPD, and trnL-F intergenic spacer to characterize 15 indigenous edible bamboo species of north-east India. The study indicates that morphologically and genetically evolved edible bamboo species having large and robust bamboo-shoot texture and growing at low altitude contain high level of TCC, low antioxidant properties, and low levels of beneficial macronutrients and micronutrients. Importantly, Dendrocalamus species are shown to be rich in TCC irrespective of the growing altitude while Bambusa species are found to have moderate level of TCC. The findings clearly demonstrated that Chimonobambusa callosa growing at high altitude represents safe edible bamboo species with nutritious attributes.
High demand for edible bamboo shoots of Bambusa tulda and Melocanna baccifera in many Asian ethnic groups has led to the need for developing intensive bamboo farming. To achieve this, in vitro regeneration of bamboo plantlets is needed due to the long and irregular bamboo flowering cycle and scarcity of bamboo seeds. An effective protocol for plantlets regeneration in B. tulda and M. baccifera from nodal explants following validation of the species using the sequence of trnL-F intergenic spacer region is described. Effective axillary bud breaking was achieved at 3 mg/L of 6-benzylaminopurine (BAP) in MS medium. Importantly, combining 2 mg/L of kinetin (Kn) with 3 mg/L of BAP produced a synergistic effect for shoot multiplication in B. tulda and M. baccifera. Under optimized conditions in half-strength MS medium supplemented with 3 mg/L of indole-3-butyric acid (IBA), 10 mg/L of coumarin, and 3% sucrose, profuse production of dark-brown rhizome in B. tulda and abundant rooting (81.67%, P < 0.05, F = 15.46) for M. baccifera within 30 days were achieved. The established protocol and the validation of the reported species at the molecular level will be of help to stakeholders in edible bamboo trade to conserve gene-pool and increase productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.