We describe a novel approach to the mathematical modeling and computational simulation of fully three-dimensional, electromagnetically and thermally driven, steady liquid-metal flow. The phenomenon is governed by the Navier-Stokes equations, Maxwell’s equations, Ohm’s law, and the heat equation, all nonlinearly coupled via Lorentz and electromotive forces, buoyancy forces, and convective and dissipative heat transfer. Employing the electric current density rather than the magnetic field as the primary electromagnetic variable, it is possible to avoid artificial or highly idealized boundary conditions for electric and magnetic fields and to account exactly for the electromagnetic interaction of the fluid with the surrounding media. A finite element method based on this approach was used to simulate the flow of a metallic melt in a cylindrical container, rotating steadily in a uniform magnetic field perpendicular to the cylinder axis. Velocity, pressure, current, and potential distributions were computed and compared to theoretical predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.