An improved stiffness model is proposed for bolted joints made of similar and dissimilar plates. A novel approach is used to obtain an expression for the effective area used for determining the joint stiffness. More accurate estimate of the joint stiffness provides a more reliable prediction of the joint behavior both during its initial assembly, as well as under subsequently applied tensile loads in service. The effect of the grip length-to-diameter ratio, joint sizes, underhead contact radii ratio, hole clearance, and plate material/thickness ratio are investigated. Experimental data are used for determining the envelope angle α in the proposed analytical model. Finite element modeling is used for evaluating the accuracy of the proposed stiffness model.
This study provides a theoretical and experimental investigation of the effect of the thread and bearing friction coefficients on the self-loosening of threaded fasteners that are subjected to cyclic transverse loads. The friction coefficients are varied by using different types of coating and lubrication. A phosphate and oil coating and an olefin and molydisulfide solid film lubricant are used on the bolts tested. A mathematical model is developed to evaluate the self-loosening behavior in threaded fasteners when subjected to cyclic transverse loads. An experimental procedure and test setup are proposed in order to collect real-time data on the loosening rate (rate of clamp load loss per cycle) as well as the rotational angle of the bolt head during its gradual loosening. The experimental values of the friction coefficients are used in the mathematical model to monitor their effect on the theoretical results for the loosening rate. Experimentally, the friction coefficients are modified by changing the coating or the lubrication applied to the fasteners. The theoretical and experimental results are presented and discussed.
Abstract:hi this paper, formulas are developed for the calculation of the effective radius of the bearing friction forces on the rotating contact surface in threaded fasteners. These formulas provide a more accurate estimation of the underhead bearing friction torque component in threaded fastener applications. This enhances the reliability, safety, and the quality of bolted assemblies, especially in critical applications. It is well known that the torque-tension correlation in threaded fasteners, and the resulting joint clamping force, is highly sensitive to friction torque components: under the turning head and between threads. This analysis focuses on the bearing friction torque component under the turning head of a threaded fastener. Further, it analyzes the error contained in the current practice when an approximate value, equal to the mean contact surface radius, is used instead of the actual bearing radius. The new formulas for the bearing friction radius are developed for a mathematical model of a bolted joint using four different scenarios of the contact pressure distribution under the rotating fastener head or nut. The effect of the radially varying sliding speed over the rotating contact surface is analyzed and compared with a constant friction coefficient scenario. Numerical results and error analysis are presented in terms of a single non-dimensional variable; namely, the radii ratio between the outside and the inside bearing area.Keywords: Bolted joints, threaded fasteners, underhead friction, bearing friction, underhead friction torque, bearing radius, torque-tension relationship, thread friction, torque, pitch torque, fastener underhead pressure.Correspondence regarding this paper should be directed to Sayed A. Nassar, Mechanical Engineering Department, Oakland University, Rochester, MI 48309. Nomenclature:D nominaldiameter of the fastener r^ effective radius of the contact area under the turning head or nut of the fastener r effective thread contact radius F fastener tension P underhead contact pressure r^ mean of the contact area under the turning fastener head (or nut) y ratio of the maximum to minimum contact radii a exponent p maximum contact pressure In this paper, formulas are developed for the calculation of the effective radius of the bearing friction forces on the rotating contact surface in threaded fasteners. These formulas provide a more accurate estimation of the underhead bearing friction torque component in threaded fastener applications. This enhances the reliability, safety, and the quality of bolted assemblies, especially in critical applications. It is well known that the torque-tension correlation in threaded fasteners, and the resulting joint clamping force, is highly sensitive to friction torque components: under the turning head and between threads. This analysis focuses on the bearing friction torque component under the turning head of a threaded fastener. Further, it analyzes the error contained in the current practice when an approximate value, equal to the mean contac...
This study provides an experimental and theoretical investigation of the effect of hole clearance and thread fit on the self-loosening of tightened threaded fasteners that are subjected to a cyclic transverse service load. An experimental procedure and test setup are developed in order to collect real-time data on the rate of clamp load loss per cycle as well as the loosening rotation of the bolt head. Three levels of hole clearance are investigated; namely, 3%, 6%, and 10% of the bolt nominal diameter. For the commonly used 2A thread fit for a selected bolt size, three classes of the nut thread fit are considered; namely, 1B, 2B, and 3B. A simplified mathematical model is used for the analytical investigation of the effect of the hole clearance and thread fit on threaded fasteners self-loosening. The experimental and theoretical results are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.