In this paper, we compare the performance of two main MIMO techniques, beamforming and multiplexing, in the Terahertz (THz) band. The main problem with the THz band is its huge propagation loss, which is caused by the tremendous signal attenuation due to molecule absorption of the electromagnetic wave. To overcome the path loss issue, massive MIMO has been suggested to be employed in the network and is expected to provide Tbps for a distance within a few meters. In this context, beamforming is studied recently as the main technique to take advantage of MIMO in THz and overcome the very high path loss with the assumption that the THz communication channel is Line-of-Sight (LoS) and there are not significant multipath rays. On the other hand, recent studies also showed that the well-known absorbed energy by molecules can be reradiated immediately in the same frequency. Such re-radiated signal is correlated with the main signal and can provide rich scattering paths for the communication channel. This means that a significant MIMO multiplexing gain can be achieved even in a LoS scenario for the THz band. Our simulation results reveal a surprising observation that the MIMO multiplexing could be a better choice than the MIMO beamforming under certain conditions in THz communications.
In this paper, we show how the absorption and reradiation energy from molecules in the air can influence the Multiple Input Multiple Output (MIMO) performance in highfrequency bands, e.g., millimeter wave (mmWave) and terahertz. In more detail, some common atmosphere molecules, such as oxygen and water, can absorb and re-radiate energy in their natural resonance frequencies, such as 60 GHz, 180 GHz and 320 GHz. Hence, when hit by electromagnetic waves, molecules will get excited and absorb energy, which leads to an extra path loss and is known as molecular attenuation. Meanwhile, the absorbed energy will be re-radiated towards a random direction with a random phase. These re-radiated waves also interfere with the signal transmission. Although, the molecular re-radiation was mostly considered as noise in literature, recent works show that it is correlated to the main signal and can be viewed as a composition of multiple delayed or scattered signals. Such a phenomenon can provide non-line-of-sight (NLoS) paths in an environment that lacks scatterers, which increases spatial multiplexing and thus greatly enhances the performance of MIMO systems. Therefore in this paper, we explore the scattering model and noise models of molecular re-radiation to characterize the channel transfer function of the NLoS channels created by atmosphere molecules. Our simulation results show that the re-radiation can increase MIMO capacity up to 3 folds in mmWave and 6 folds in terahertz for a set of realistic transmit power, distance, and antenna numbers. We also show that in the high SNR, the re-radiation makes the open-loop precoding viable, which is an alternative to beamforming to avoid beam alignment sensitivity in high mobility applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.