The development of the Internet of Things (IoT) technology and their integration in smart cities have changed the way we work and live, and enriched our society. However, IoT technologies present several challenges such as increases in energy consumption, and produces toxic pollution as well as E-waste in smart cities. Smart city applications must be environmentally-friendly, hence require a move towards green IoT. Green IoT leads to an eco-friendly environment, which is more sustainable for smart cities. Therefore, it is essential to address the techniques and strategies for reducing pollution hazards, traffic waste, resource usage, energy consumption, providing public safety, life quality, and sustaining the environment and cost management. This survey focuses on providing a comprehensive review of the techniques and strategies for making cities smarter, sustainable, and eco-friendly. Furthermore, the survey focuses on IoT and its capabilities to merge into aspects of potential to address the needs of smart cities. Finally, we discuss challenges and opportunities for future research in smart city applications.
This paper presents a new method for recharging flying base stations, carried by Unmanned Aerial Vehicles (UAVs), using wireless power transfer from dedicated, airborne, Radio Frequency (RF) energy sources. In particular, we study a system in which UAVs receive wireless power without being disrupted from their regular trajectory. The optimal placement of the energy sources are studied so as to maximize received power from the energy sources by the receiver UAVs flying with a linear trajectory over a square area. We find that for our studied scenario of two UAVs, if an even number of energy sources are used, placing them in the optimal locations maximizes the total received power, while achieving fairness among the UAVs. However, in the case of using an odd number of energy sources, we can either maximize the total received power, or achieve fairness, but not both at the same time. Numerical results show that placing the energy sources at the suggested optimal locations results in significant power gain compared to nonoptimal placements.
Unmanned Aerial Vehicles (UAVs) are increasingly being used in a high-computation paradigm enabled with smart applications in the Beyond Fifth Generation (B5G) wireless communication networks. These networks have an avenue for generating a considerable amount of heterogeneous data by the expanding number of Internet of Things (IoT) devices in smart environments. However, storing and processing massive data with limited computational capability and energy availability at local nodes in the IoT network has been a significant difficulty, mainly when deploying Artificial Intelligence (AI) techniques to extract discriminatory information from the massive amount of data for different tasks.Therefore, Mobile Edge Computing (MEC) has evolved as a promising computing paradigm leveraged with efficient technology to improve the quality of services of edge devices and network performance better than cloud computing networks, addressing challenging problems of latency and computation-intensive offloading in a UAV-assisted framework. This paper provides a comprehensive review of intelligent UAV computing technology to enable 6G networks over smart environments. We highlight the utility of UAV computing and the critical role of Federated Learning (FL) in meeting the challenges related to energy, security, task offloading, and latency of IoT data in smart environments. We present the reader with an insight into UAV computing, advantages, applications, and challenges that can provide helpful guidance for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.