Background:The aim of this study was to design and assess the effects of hydroalcoholic extract of Matricaria chamomilla (MC) on preantral follicle culture of mouse ovaries in a three-dimensional culture system.Methods:Isolated preantral follicles were randomly divided into three main groups: the control group containing 10% fetal bovine serum without MC extract (G1), the first experimental group supplemented with 25 μg/ml hydroalcoholic extract of chamomile (G2), and the second experimental group supplemented with 50 μg/ml hydroalcoholic extract of chamomile (G3).Results:After 12 days of culture, the survival rate (P < 0.05), antrum formation (P < 0.01), metaphase two oocytes (P < 0.01), and the expression of PCNA (P < 0.05) and FSHR (P < 0.05) genes significantly decreased in G3 as compared with G1. On the other hand, at the last day of culture (day 12), the mean diameter of follicles cultured in the medium which was supplemented with 50 μg/ml hydroalcoholic extract of chamomile significantly decreased as compared with the G1 (P < 0.05). In addition, the levels of progesterone and dehydroepiandrosterone hormones significantly increased in the medium of G3 relative to G1 (P < 0.01), while in the medium of G1, the level of 17β-estradiol was significantly higher than that of other groups (P < 0.01). Reactive oxygen species levels of metaphase II oocytes were significantly decreased in G2 as compared with G1 (P < 0.01).Conclusion:Adding chamomile extract to culture media appeared to decrease follicular function and development.
Aeromonas veronii is an important pathogen causing freshwater fish sepsis and ulcer syndrome. An increasing number of cases have demonstrated its significance as an aquatic zoonotic agent. The purpose of this study was to ensure the safety of freshwater products by evaluating the infection status of edible freshwater fish. In this experiment, we isolated A. veronii from several species of apparently healthy freshwater fish, including Carassius auratus, Cyprinus carpio, Ctenopharyngodon idella, and Silurus asotus. A. veronii was identified through bacterial staining, culture characteristics, and 16S rDNA gene sequence. In addition, polymerase chain reaction (PCR) was used to investigate the distribution of seven major virulence genes, including aerolysin (aer: 88.51%), cytotoxic enterotoxin (act: 71.26%), serine proteinase (ser: 54.02%), adhesin (Aha: 40.23%), phospholipase (lip: 45.98%), nuclease (exu: 51.72%), and quorum sensing-controlled virulence factor (LuxS: 59.77%). In total, 496 strains of Aeromonas were isolated, including 87 strains of A. veronii. The isolates of A. veronii were Gram-negative, rod-shaped bacteria, and the colonies are yellow on Rimler-Shotts (RS) medium and showed greater than 99% homology with A. veronii ATCC35624 according to analyses of the 16S rDNA sequence. Nearly 50% of the A. veronii isolates carried at least four or more virulence genes, 25% of the isolates carried at least five types of virulence genes, and 59.77% isolates carried the LuxS gene, and the isolates carrying more virulence genes were found to be more virulent. These results are of great significance for further improving the food safety assessment of freshwater aquatic products.
MicroRNAs are small, single stranded, and noncoding RNAs that have been proven to be potent regulators of adipogenesis. However, the role of bta‐miR‐149‐5p in regulating bovine adipogenesis is still unclear. Expression profiling in different stages of adipogenesis revealed that bta‐miR‐149‐5p was enriched in the proliferation stage, and also on Day 9 of differentiation in bovine adipocytes. Our gain of function study showed that bta‐miR‐149‐5p can negatively regulate both bovine adipocyte proliferation and differentiation. Overexpression of bta‐miR‐149‐5p suppressed the expression of proliferation marker genes at both the messenger RNA (mRNA) and protein levels, markedly decreased the percentage of S‐phase cells, decreased the number of EdU‐stained cells, and substantially reduced adipocyte proliferation vitality in the cell count assay. Collectively, these findings elucidated that bta‐miR‐149‐5p inhibits adipocyte proliferation. Furthermore, overexpression of bta‐miR‐149‐5p also suppressed the expression of adipogenic genes at both the mRNA and protein levels, inhibited lipid accumulation, and reduced the secretion of adiponectin in bovine adipocytes. Furthermore, a luciferase activity assay explored how bta‐miR‐149‐5p targeted CRTCs (CRTC1 and CRTC2) directly. This targeting was further validated by the mRNA and protein level expression of CRTC1 and CRTC2, which were down regulated by bta‐miR‐149‐5p overexpression. Moreover, bta‐miR‐149‐5p indirectly targeted CRTC1 and CRTC2 through regulating their key transcription factors. Overexpression of bta‐miR‐149‐5p suppressed the expression of SMAD3, while enriched the expression of NRF1, which are the key transcription factors and proven regulators of CRTC1. Overexpression of bta‐miR‐149‐5p also repressed the expression of C/EBPγ, XBP1, INSM1, and ZNF263, which are the key regulators of CRTCs, at both the mRNA and protein levels. These findings suggest that bta‐miR‐149‐5p is a negative regulator of CRTC1 and CRTC2 both at transcriptional and posttranscriptional level. Taken together, these findings suggest that bta‐miR‐149‐5p can regulate adipogenesis, which implies that bta‐miR‐149‐5p could be a target for increasing intramuscular fat in beef cattle.
Background Weaning stress of piglets causes a huge economic loss to the pig industry. Balance and stability of the intestinal microenvironment is an effective way to reduce the occurance of stress during the weaning process. Clostridium butyricum, as a new microecological preparation, is resistant to high temperature, acid, bile salts and some antibiotics. The aim of present study is to investigate the effects of C. butyricum on the intestinal microbiota and their metabolites in weaned piglets. Results There was no statistical significance in the growth performance and the incidence of diarrhoea among the weaned piglets treated with C. butyricum during 0–21 days experimental period. Analysis of 16S rRNA gene sequencing results showed that the operational taxonomic units (OTUs), abundance-based coverage estimator (ACE) and Chao index of the CB group were found to be significantly increased compared with the NC group (P < 0.05). Bacteroidetes, Firmicutes and Tenericutes were the predominant bacterial phyla in the weaned piglets. A marked increase in the relative abundance of Megasphaera, Ruminococcaceae_NK4A214_group and Prevotellaceae_UCG-003, along with a decreased relative abundance of Ruminococcaceae_UCG-005 was observed in the CB group, when compared with the NC group (P < 0.05). With the addition of C. butyricum, a total of twenty-two significantly altered metabolites were obtained in the feces of piglets. The integrated pathway analysis by MetaboAnalyst indicated that arginine and proline metabolism; valine, leucine and isoleucine biosynthesis; and phenylalanine metabolism were the main three altered pathways, based on the topology. Furthermore, Spearman’s analysis revealed some altered gut microbiota genus such as Oscillospira, Ruminococcaceae_NK4A214_group, Megasphaera, Ruminococcaceae_UCG-005, Prevotella_2, Ruminococcaceae_UCG-002, Rikenellaceae_RC9_gut_group and Prevotellaceae_UCG-003 were associated with the alterations in the fecal metabolites (P < 0.05), indicating that C. butyricum presented a potential protective impact through gut microbiota. The intestinal metabolites changed by C. butyricum mainly involved the variation of citrulline, dicarboxylic acids, branched-chain amino acid and tryptophan metabolic pathways. Conclusions Overall, this study strengthens the idea that the dietary C. butyricum treatment can significantly alter the intestinal microbiota and metabolite profiles of the weaned piglets, and C. butyricum can offer potential benefits for the gut health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.