The early detection of damaged (partially broken) outdoor insulators in primary distribution systems is of paramount importance for continuous electricity supply and public safety. Unmanned aerial vehicles (UAVs) present a safer, autonomous, and efficient way to examine the power system components without closing the power distribution system. In this work, a novel dataset is designed by capturing real images using UAVs and manually generated images collected to overcome the data insufficiency problem. A deep Laplacian pyramid-based super-resolution network is implemented to reconstruct high-resolution training images. To improve the visibility of low-light images, a low-light image enhancement technique is used for the robust exposure correction of the training images. A different fine-tuning strategy is implemented for fine-tuning the object detection model to increase detection accuracy for the specific faulty insulators. Several flight path strategies are proposed to overcome the shuttering effect of insulators, along with providing a less complex and time- and energy-efficient approach for capturing a video stream of the power system components. The performance of different object detection models is presented for selecting the most suitable one for fine-tuning on the specific faulty insulator dataset. For the detection of damaged insulators, our proposed method achieved an F1-score of 0.81 and 0.77 on two different datasets and presents a simple and more efficient flight strategy. Our approach is based on real aerial inspection of in-service porcelain insulators by extensive evaluation of several video sequences showing robust fault recognition and diagnostic capabilities. Our approach is demonstrated on data acquired by a drone in Swat, Pakistan.
Traffic congestion control is becoming a popular field of research due to the rapid development of the automotive market. Vehicular ad hoc networks (VANETs) have become the core research technology for numerous application possibilities related to road safety. Road congestions have been a serious issue of all time since the nodes have high mobility and transmission range is limited, resulting in an interruption of communication. One of the significant technical challenges faced in implementing VANET is the design of the routing protocol, providing adequate information and a reliable source for the destination. We proposed a novel mechanism unmanned aerial vehicle (UAV)-assisted ad hoc on-demand distance vector (AODV) routing protocol (UAVa) for current-time traffic information accumulation and sharing to the entire traffic network and to control congestions before it happens. The UAV-assisted (UAVa) protocol is dedicated to urban environments, and its primary goal is to enhance the performance of routing protocols based on intersections. We compared the overall performance of existing routing protocols, namely ad hoc on-demand distance vector. The simulations were done by using OpenStreetMap (OSM), Network Simulator (NS-2.35), Simulation of Urban Mobility (SUMO), and VanetMobiSim. Furthermore, we compared the simulation results with AODV, and it shows that UAV-assisted (UAVa) AODV has significantly enhanced the packet delivery ratio, reduced the end-to-end delay, improved the average and instant throughput, and saved more energy. The results show that the UAVa is more robust and effective and we can conclude that UAVa is more suitable for VANETs.
The primary distribution systems are comprised of power lines delivering power to utility feeders from substations. The inspection and maintenance of damaged and broken power system insulators are of paramount importance for continuous power supply and public safety. hence, to identify any faults and defects in advance a periodic inspection of power line insulators and other components be ensured beforehand. To automate the process and reduce operational cost and risk Unmanned Aerial Vehicles (UAVs) are being extensively utilized. As they present a safer and efficient way to examine the power system insulators and their components without closing the power distribution system ensuring continuous supply to the end-users. To achieve these objectives in this work a novel dataset is designed by capturing real images using UAVs and manually generated images collected to overcome the data insufficiency problem. Deep Laplacian pyramids based super-resolution network is implemented to reconstruct high-resolution training images. To improve the visibility of low light images a low light image enhancement technique is used for the robust exposure correction of the training images. Using computer vision-based object detection techniques to identify faults and classify them according to classes they belong. A different fine-tuning strategy is implemented for fine-tuning the object detection model to increase detection accuracy for the specific faulty insulators. To improve the faults detection several flight path strategies are proposed for efficient inspection. Such strategies overcome the shuttering effect of insulators along with providing a less complex, time, and energy-efficient approach for capturing video stream of the power system components. Performance of different object detection models is presented for selecting the suitable one for fine-tuning on the specific faulty insulator dataset. Our proposed approach gives a less complex and more efficient flight strategy along with better results. For defect detection, our proposed method achieved an F1-score of 0.81 and 0.77 on two different datasets. Our approach is based on real aerial inspection of in-service porcelain insulators by extensive evaluation of several video sequences showing robust faults recognition and diagnostic capabilities. Our approach is demonstrated on data acquired by a drone in Swat Pakistan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.