AMPylation is an emerging post-translational modification that occurs on the hydroxyl group of threonine, serine, or tyrosine via a phosphodiester bond. AMPylators catalyze this process as covalent attachment of adenosine monophosphate to the amino acid side chain of a peptide. Recent studies have shown that this post-translational modification is directly responsible for the regulation of neurodevelopment and neurodegeneration and is also involved in many physiological processes. Despite the importance of this post-translational modification, there is no peptide sequence dataset available for conducting computation analysis. Therefore, so far, no computational approach has been proposed for predicting AMPylation. In this study, we introduce a new dataset of this distinct post-translational modification and develop a new machine learning tool using a deep convolutional neural network called DeepAmp to predict AMPylation sites in proteins. DeepAmp achieves 77.7%, 79.1%, 76.8%, 0.55, and 0.85 in terms of Accuracy, Sensitivity, Specificity, Matthews Correlation Coefficient, and Area Under Curve for AMPylation site prediction task, respectively. As the first machine learning model, DeepAmp demonstrate promising results which highlight its potential to solve this problem. Our presented dataset and DeepAmp as a standalone predictor are publicly available at https://github.com/MehediAzim/DeepAmp.
AMPylation is an emerging post-translational modification that occurs on the hydroxyl group of threonine, serine, or tyrosine via a phosphodiester bond. AMPylators catalyze this process as covalent attachment of adenosine monophosphate to the amino acid side chain of a peptide. Recent studies have shown that this post-translational modification is directly responsible for regulation of neurodevelopment and neurodegeneration and also involved in many physiological processes. Despite the importance of this post-translational modification, there is no peptide sequence dataset available for conducting computational analysis. Therefore, so far, no computational approach has been proposed for predicting AMPylation. In this study, we introduce a new dataset of this distinct post-translational modification and develop a new machine learning tool using a deep convolutional neural network called DeepAmp to predict AMPylation sites in proteins. DeepAmp achieves 77.7%, 79.1%, 76.8%, and 0.55 in terms of Accuracy, Sensitivity, Specificity, and Matthews Correlation Coefficient (MCC) for AMPylation site prediction task, respectively. As the first machine learning model, DeepAmp demonstrate promising results which highlight its potential to solve this problem. Our presented dataset and DeepAmp as a standalone predictor are publicly available at https://github.com/MehediAzim/DeepAmp
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.