Polysulfone (PSU)-based Proton Exchange Membranes (PEMs) were synthesized from different pre-sulfonated monomers and evaluated for use in a vanadium redox flow battery (VRFB). Two types of sulfonated monomers, containing either an allyl sulfonate or styrene sulfonate group, were synthesized by a Mizoroki-Heck reaction from a 4,4'-difluorodiphenyl sulfone derivative. These monomers were polymerized with 4,4'-(hexafluoroisopropylidene)diphenol to give partially fluorinated PSUs with controlled placement and content of sulfuric acid moieties. PEMs were then fabricated by solution casting and characterized against the membranes made from traditional backbone sulfonated PSU. The new PEMs revealed desirable physical properties and performance in a VRFB cell competitive with the Nafion membrane. Furthermore, each PEM with a different acid side-chain structure exhibited varying properties and performance depending on its acid content, providing a path to optimization.
Polystyrene-based anion exchange membranes (AEMs) have been fabricated using in situ click chemistry between azide and alkyne moieties introduced as side groups on functionalized polymers. The membrane properties such as water uptake, swelling ratio and conductivity were affected by the number of cations and the degree of crosslinking. The membranes containing a larger amount of trimethylammonium cationic groups (i.e. higher ion exchange capacity) showed high hydroxide conductivity when immersed in KOH solution, exhibiting a peak in conductivity (156 mS cm −1 ) in 3 mol L -1 KOH solution. A higher degree of crosslinking tended to decrease conductivity. These membranes demonstrated relatively good stability in 8 mol L -1 KOH at 60 ∘ C and maintained 33%-62% of initial conductivity after 49 days with most of the loss in conductivity occurring in early stages of the test. In an alkaline fuel cell, the areal specific resistance was constant indicating good stability of the membranes. The observed peak power density (157 mW cm −2 ) was comparable to that of other AEM-based fuel cells reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.