The lungs are the primary organs affected in LHD (left heart disease). Increased left atrial pressure leads to pulmonary alveolar-capillary stress failure, resulting in cycles of alveolar wall injury and repair. The reparative process causes the proliferation of MYFs (myofibroblasts) with fibrosis and extracellular matrix deposition, resulting in thickening of the alveolar wall. Although the resultant reduction in vascular permeability is initially protective against pulmonary oedema, the process becomes maladaptive causing a restrictive lung syndrome with impaired gas exchange. This pathological process may also contribute to PH (pulmonary hypertension) due to LHD. Few clinical trials have specifically evaluated lung structural remodelling and the effect of related therapies in LHD. Currently approved treatment for chronic HF (heart failure) may have direct beneficial effects on lung structural remodelling. In the future, novel therapies specifically targeting the remodelling processes may potentially be utilized. In the present review, we summarize data supporting the clinical importance and pathophysiological mechanisms of lung structural remodelling in LHD and propose that this pathophysiological process should be explored further in pre-clinical studies and future therapeutic trials.
Myocardial perfusion imaging has long been used off label by practitioners attending for children with cardiac aliments. To provide clinicians with evidence-based dosage recommendation, a phase I-II, open-label, nonrandomized, multicenter trial was therefore designed using 99m Tc-sestamibi in pediatric subjects (registered under www.clinicaltrials. gov identifier no. NCT00162045). Methods: Safety and pharmacokinetic data were collected from 78 subjects using either a 1-d imaging protocol (3.7-7.4 MBq/kg, followed by 11.1 MBq/kg) or a 2-d protocol (7.4 MBq/kg for both rest and stress). Anterior and posterior planar images were collected at 15 min, 1.5 h, 4 h, and 8 h. Blood and urine samples were collected at predetermined times. Results: Subjects included 39 children (mean age ± SD, 8.5 ± 2.04 y) and 39 adolescents (mean age ± SD, 13.6 ± 1.39 y). Mean estimated organ-absorbed doses to the upper large intestine, small intestine, gallbladder wall, and lower large intestines were 0.082, 0.043, 0.042, and 0.035 mSv/MBq, respectively. All patients tolerated the radiotracer without serious adverse effects. Significant differences were observed in the liver, upper large intestine contents, and small intestine contents between rest and stress imaging. The effective dose equivalent and effective dose averages were lower in adolescents than younger children (0.011 and 0.019 mSv/MBq, respectively; P , 0.0001). Percentage injected doses (%IDs) corrected for radioactive decay in all dosimetry-evaluable subjects at 15 min and 4 h were 1.9% and 1.2% in the myocardium. Similarly in the lungs, the %ID for all dosimetryevaluable subjects was 4.9% at 15 min after injection. At rest, the %ID in the liver decreased from a maximum of about 26% at 15 min to less than 9% at 90 min. With stress, values decreased from 15% to 7%, respectively. Conclusion: The estimates of radiation dosimetry, pharmacokinetic parameters, and safety profile in this study population are similar to published studies based on body-mass extrapolations from studies in adults. As such, applying current 99m Tc-sestamibi dosing regimens for 1-and 2-d protocols based on those extrapolations will result in the expected radiation dose in children and adolescents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.