In order to evaluate the impact of a policy intervention on a group of units over time, it is important to correctly estimate the average treatment effect (ATE) measure. Due to lack of robustness of the existing procedures of estimating ATE from panel data, in this paper, we introduce a robust estimator of the ATE and the subsequent inference procedures using the popular approach of minimum density power divergence inference. Asymptotic properties of the proposed ATE estimator are derived and used to construct robust test statistics for testing parametric hypotheses related to the ATE. Besides asymptotic analyses of efficiency and powers, extensive simulation studies are conducted to study the finite-sample performances of our proposed estimation and testing procedures under both pure and contaminated data. The robustness of the ATE estimator is further investigated theoretically through the influence functions analyses. Finally our proposal is applied to study the long-term economic effects of the 2004 Indian Ocean earthquake and tsunami on the (per-capita) gross domestic products (GDP) of five mostly affected countries, namely Indonesia,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.