SummaryFlagellins from Campylobacter jejuni 81-176 and Campylobacter coli VC167 are heavily glycosylated. The major modifications on both flagellins are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidinosubstituted analogue of pseudaminic acid (PseAm). Previous data have indicated that PseAm is synthesized via Pse5Ac7Ac in C. jejuni 81-176, but that the two sugars are synthesized using independent pathways in C. coli VC167. The Cj1293 gene of C. jejuni encodes a putative UDP-GlcNAc C 6 -dehydratase/C 4 -reductase that is similar to a protein required for glycosylation of Caulobacter crescentus flagellin. The Cj1293 gene is expressed either under the control of a s s s s 54 promoter that overlaps the coding region of Cj1292 or as a polycistronic message under the control of a s s s s 70 promoter upstream of Cj1292. A mutant in gene Cj1293 in C. jejuni 81-176 was non-motile and non-flagellated and accumulated unglycosylated flagellin intracellularly. This mutant was complemented in trans with the homologous C. jejuni gene, as well as the Helicobacter pylori homologue, HP0840, which has been shown to encode a protein with UDP-GlcNAc C 6 -dehydratase/C 4 -reductase activity. Mutation of Cj1293 in C. coli VC167 resulted in a fully motile strain that synthesized a flagella filament composed of flagellin in which Pse5Ac7Ac was replaced by PseAm. The filament from the C. coli Cj1293 mutant displayed increased solubility in SDS compared with the wild-type filament. A double mutant in C. coli VC167, defective in both Cj1293 and ptmD , encoding part of the independent PseAm pathway, was also non-motile and non-flagellated and accumulated unglycosylated flagellin intracellularly. Collectively, the data indicate that Cj1293 is essential for Pse5Ac7Ac biosynthesis from UDP-GlcNAc, and that glycosylation is required for flagella biogenesis in campylobacters.
The supplementation of the sialic acid biosynthetic pathway with exogenously supplied N-acetylmannosamine (ManNAc) analogs has many potential biomedical and biotechnological applications. In this work, we explore the structure-activity relationship of ManNAc analogs on cell viability and metabolic flux into the sialic acid biosynthetic pathway to gain a better understanding of the fundamental biology underlying "glycosylation engineering" technology. A panel of ManNAc analogs bearing various modifications on the hydroxyl groups as well as substitutions at the N-acyl position was investigated. Increasing the carbon chain length of ester derivatives attached to the hydroxyl groups increased the metabolic efficiency of sialic acid production, whereas similar modification to the N-acyl group decreased efficiency. In both cases, increases in chain length decreased cell viability; DNA ladder formation, Annexin V-FITC two-dimensional flow cytometry assays, caspase-3 activation, and down-regulation of sialoglycoconjugate-processing enzymes established that the observed growth inhibition and toxicity resulted from apoptosis. Two of the panel of 12 analogs tested, specifically Ac 4 ManNLev and Ac 4 ManNHomoLev, were highly toxic. Interestingly, both of these analogs maintained a ketone functionality in the same position relative to the core monosaccharide structure, and both also inhibited flux through the sialic acid pathway (the remainder of the less toxic analogs either increased or had no measurable impact on flux). These results provide fundamental insights into the role of sialic acid metabolism in apoptosis by demonstrating that ManNAc analogs can modulate apoptosis both indirectly via hydroxylgroup effects and directly through N-acyl-group effects.The term "sialic acid engineering" refers to a technique where non-natural N-acetylmannosamine (ManNAc) 1 analogs intercept the sialic acid biosynthetic pathway and are incorporated into cellular sialoglycoconjugates in the place of sialic acid residues (Fig. 1) (1, 2). The impetus behind this strategy is to mimic nature, which uses Ͼ50 different forms of sialic acid to modulate the structure and function of sialic acid-bearing glycoproteins and lipids (3). By using synthetic N-acyl-modified ManNAc analogs, the surfaces of living cells can be endowed with novel properties not found in nature (4) that, depending on the exact analog used to perform this "submolecular microsurgery" (5), have the potential to elicit a variety of changes in the behavior of the host cell. Theoretically, the ability to modify the cell surface and recombinant sialoglycoconjugates with molecular precision has the potential to regulate any biological process governed by sialic acid, such as cell growth and differentiation, communication among different cells, recognition of soluble factors, and attachment to, or disengagement from, the extracellular matrix (6). In practice, sialic acid engineering methods have already been demonstrated to regulate cellular responses ranging from adhesion to prolif...
Ribosome recycling factor (RRF) catalyzes the fourth step of protein synthesis in vitro: disassembly of the post-termination complex of ribosomes, mRNA and tRNA. We now report the first in vivo evidence of RRF function using 12 temperature-sensitive Escherichia coli mutants which we isolated in this study. At non-permissive temperatures, most of the ribosomes remain on mRNA, scan downstream from the termination codon, and re-initiate translation at various sites in all frames without the presence of an initiation codon. Re-initiation does not occur upstream from the termination codon nor beyond a downstream initiation signal. RRF inactivation was bacteriostatic in the growing phase and bactericidal during the transition between the stationary and growing phase, confirming the essential nature of the fourth step of protein synthesis in vivo.
Unnatural analogues of sialic acid can be delivered to mammalian cell surfaces through the metabolic transformation of unnatural N-acetylmannosamine (ManNAc) derivatives. In previous studies, mannosamine analogues bearing simple N-acyl groups up to five carbon atoms in length were recognized as substrates by the biosynthetic machinery and transformed into cell surface sialoglycoconjugates [Keppler, O. T., et al. (2001) Glycobiology 11, 11R-18R]. Such structural alterations to cell surface glycans can be used to probe carbohydrate-dependent phenomena. This report describes our investigation into the extent of tolerance of the pathway toward additional structural alterations of the N-acyl substituent of ManNAc. A panel of analogues with ketone-containing N-acyl groups that varied in the length or steric bulk was chemically synthesized and tested for metabolic conversion to cell surface glycans. We found that extension of the N-acyl chain to six, seven, or eight carbon atoms dramatically reduced utilization by the biosynthetic machinery. Likewise, branching from the linear chain reduced metabolic conversion. Quantitation of metabolic intermediates suggested that cellular metabolism is limited by the phosphorylation of the N-acylmannosamines by ManNAc 6-kinase in the first step of the pathway. This was confirmed by enzymatic assay of the partially purified enzyme with unnatural substrates. Identification of ManNAc 6-kinase as a bottleneck for unnatural sialic acid biosynthesis provides a target for expanding the metabolic promiscuity of mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.