In this paper we prove that ground states of the NLS which satisfy the sufficient conditions for orbital stability of M.Weinstein, are also asymptotically stable, for seemingly generic equations. Here we assume that the NLS has a smooth short range nonlinearity. We assume also the presence of a very short range and smooth linear potential, to avoid translation invariance. The basic idea is to perform a Birkhoff normal form argument on the hamiltonian, as in a paper by Bambusi and Cuccagna on the stability of the 0 solution for NLKG. But in our case, the natural coordinates arising from the linearization are not canonical. So we need also to apply the Darboux Theorem. With some care though, in order not to destroy some nice features of the initial hamiltonian.
In this paper we study small amplitude solutions of nonlinear Klein Gordon equations with a potential. Under suitable smoothness and decay assumptions on the potential and a genericity assumption on the nonlinearity, we prove that all small energy solutions are asymptotically free. In cases where the linear system has at most one bound state the result was already proved by Soffer and Weinstein: we obtain here a result valid in the case of an arbitrary number of possibly degenerate bound states. The proof is based on a combination of Birkhoff normal form techniques and dispersive estimates.
We describe the asymptotic behavior of small energy solutions of an NLS with a trapping potential generalizing work of Soffer and Weinstein, and of Tsai and Yau. The novelty is that we allow generic spectra associated to the potential. This is yet a new application of the idea of interpreting the nonlinear Fermi Golden Rule as a consequence of the Hamiltonian structure.
We study the spectrum of the linearized NLS equation in three dimensions in association with the energy spectrum. We prove that unstable eigenvalues of the linearized NLS problem are related to negative eigenvalues of the energy spectrum, while neutrally stable eigenvalues may have both positive and negative energies. The nonsingular part of the neutrally stable essential spectrum is always related to the positive energy spectrum. We derive bounds on the number of unstable eigenvalues of the linearized NLS problem and study bifurcations of embedded eigenvalues of positive and negative energies. We develop the L 2 -scattering theory for the linearized NLS operators and recover results of Grillakis [5] with a Fermi golden rule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.