Precipitation is a key source of freshwater; therefore, observing global patterns of precipitation and its intensity is important for science, society, and understanding our planet in a changing climate. In 2014, the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA) launched the Global Precipitation Measurement (GPM) Core Observatory (CO) spacecraft. The GPM CO carries the most advanced precipitation sensors currently in space including a dual-frequency precipitation radar provided by JAXA for measuring the three-dimensional structures of precipitation and a well-calibrated, multifrequency passive microwave radiometer that provides wide-swath precipitation data. The GPM CO was designed to measure rain rates from 0.2 to 110.0 mm h−1 and to detect moderate to intense snow events. The GPM CO serves as a reference for unifying the data from a constellation of partner satellites to provide next-generation, merged precipitation estimates globally and with high spatial and temporal resolutions. Through improved measurements of rain and snow, precipitation data from GPM provides new information such as details on precipitation structure and intensity; observations of hurricanes and typhoons as they transition from the tropics to the midlatitudes; data to advance near-real-time hazard assessment for floods, landslides, and droughts; inputs to improve weather and climate models; and insights into agricultural productivity, famine, and public health. Since launch, GPM teams have calibrated satellite instruments, refined precipitation retrieval algorithms, expanded science investigations, and processed and disseminated precipitation data for a range of applications. The current status of GPM, its ongoing science, and its future plans are presented.
The fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model is used to simulate Hurricane Bob (1991) using grids nested to high resolution (4 km). Tests are conducted to determine the sensitivity of the simulation to the available planetary boundary layer parameterizations, including the bulk aerodynamic, Blackadar, Medium-Range Forecast (MRF) model, and Burk-Thompson boundary layer schemes. Significant sensitivity is seen, with minimum central pressures varying by up to 16 mb and maximum winds by 15 m s Ϫ1. The Burk-Thompson and bulk aerodynamic boundary layer schemes produced the strongest storms while the MRF scheme produced the weakest storm. Simulated horizontal precipitation structures varied substantially between the different PBL schemes, suggesting that accurate forecasts of precipitation in hurricanes can be just as sensitive to the formulation of the PBL as they are to the cloud microphysical parameterizations. Each PBL scheme is different in its formulation of the vertical mixing within the PBL and the surface fluxes, with the exception of the MRF and Blackadar schemes, which share essentially the same surface flux parameterization. Detailed analyses of the PBL schemes describe the key differences in the surface fluxes and how they impact storm intensity. In order to isolate the effects of vertical mixing and surfaces fluxes, simulations were conducted in which each of the surface flux schemes was used in conjunction with the same vertical mixing scheme, and vice versa. These experiments indicate that simulated intensity is largely determined by the surface fluxes rather than by the vertical mixing, with the exception of the MRF PBL case, in which excessively deep vertical mixing acts to dry the lower PBL and reduce hurricane intensity. Simulations that vary only the surface fluxes suggest that the intensity of the simulated hurricane increases with increasing values of the ratio of the exchange coefficients for enthalpy and momentum, C k /C D. However, even for identical values of C k /C D , the simulated intensity varies depending on the wind speed dependence of the surface roughness parameter z 0 .
<p>As part of the &#8220;extended operations&#8221; past the 3-year prime mission, the Global Precipitation Measurement (GPM) mission continues to develop improved products, currently rolling out the next Version 07 datasets.&#160; This is later than expected, due to unforeseen complications in upgrading algorithms.&#160; Example upgrades include:&#160; Complete data across the shift in scanning strategy by the Dual-frequency Precipitation Radar is now provided. &#160;The Goddard Profiling (GPROF) algorithm is improved in regions where orographic enhancement and suppression take place, or where the surface is snowy/icy.&#160; One key point is ensuring continuity across the boundary between the Tropical Rainfall Measuring Mission (TRMM) and of the GPM Core Observatory for each product.&#160; As well, analyses by users have directly affected algorithm development.&#160; Specifically, user research on precipitation features in the Integrated Multi-satellitE Retrievals for GPM (IMERG) led to findings on how the forward/backward morphing process and Kalman filter (KF) weighting distorts the Probability Density Function (PDF) of regional precipitation rates.&#160; This insight has led to the Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood (SHARPEN), a regional adjustment to the PDF of KF precipitation estimates. &#160;In another initiative, the IMERG team worked with a user to develop the Histogram Anomaly Time Series analysis, providing a simple summary of the time series of anomalies in&#160; the PDF of precipitation over a region, and revealing natural and input-based variations in precipitation.&#160;</p><p>We will report the status of GPM Version 07 processing as of the conference time, and provide some examples of the changes in algorithm performance between Versions 06 and 07.</p>
The fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) is used to simulate Hurricane Bonnie at high resolution (2-km spacing) in order to examine how vertical wind shear impacts the distribution of vertical motion in the eyewall on both the storm and cloud scale. As in many previous studies, it is found here that the shear produces a wavenumber-1 asymmetry in the time-averaged vertical motion and rainfall. Several mechanisms for this asymmetry are evaluated. The vertical motion asymmetry is qualitatively consistent with an assumed balance between horizontal vorticity advection by the relative flow and stretching of vorticity, with relative asymmetric inflow (convergence) at low levels and outflow (divergence) at upper levels on the downshear side of the eyewall. The simulation results also show that the upward motion portion of the eyewall asymmetry is located in the direction of vortex tilt, consistent with the vertical motion that required to maintain dynamic balance. Variations in the direction and magnitude of the tilt are consistent with the presence of a vortex Rossby wave quasi mode, which is characterized by a damped precession of the upper vortex relative to the lower vortex.While the time-averaged vertical motion is characterized by ascent in a shear-induced wavenumber-1 asymmetry, the instantaneous vertical motion is typically associated with deep updraft towers that generally form on the downtilt-right side of the eyewall and dissipate on the downtilt-left side. The updrafts towers are typically associated with eyewall mesovortices rotating cyclonically around the eyewall and result from an interaction between the shear-induced relative asymmetric flow and the cyclonic circulations of the mesovortices. The eyewall mesovortices may persist for more than one orbit around the eyewall and, in these cases, can initiate multiple episodes of upward motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.