The goal of this study is to address fundamental limitations to achieving diesel-like efficiencies in heavy duty on-highway natural gas (NG) engines. Engine knock and misfire are barriers to pathways leading to higher efficiency engines. This study explores enabling technologies for development of high efficiency stoichiometric, spark ignited, natural gas engines. These include design strategies for fast and stable combustion and higher dilution tolerance. Additionally, advanced control methodologies are implemented to maintain stable operation between knock and misfire limits. To implement controlled end-gas autoignition (C-EGAI) strategies a Combustion Intensity Metric (CIM) is used for ignition control with the use of a Woodward large engine control module (LECM). Tests were conducted using a single cylinder, variable compression ratio, cooperative fuel research (CFR) engine with baseline conditions of 900 RPM, engine load of 800 kPa indicated mean effective pressure (IMEP), and stoichiometric air/fuel ratio. Exhaust gas recirculation (EGR) tests were performed using a custom EGR system that simulates a high pressure EGR loop and can provide a range of EGR rates from 0 to 40%. The experimental measurements included the variance of EGR rate, compression ratio, engine speed, IMEP, and CIM. These five variables were optimized through a Modified BoxBenken design Surface Response Method (RSM), with brake efficiency as the merit function. A positive linear correlation between CIM and f-EGAI was identified. Consequently, CIM was used as the feedback control parameter for C-EGAI. As such, implementation of C-EGAI effectively allowed for the utilization of high EGR rates and CRs, controlling combustion between a narrower gap between knock and lean limits. The change from fixed to parametric ignition timing with CIM targeted select values of f-EGAI with an average coefficient of variance (COV) of peak pressure of 5.4. The RSM efficiency optimization concluded with operational conditions of 1080 RPM, 1150 kPa IMEP, 10.55:1 compression ratio, and 17.8% EGR rate with a brake efficiency of 21.3%. At this optimized point of peak performance, a f-EGAI for C-EGAI was observed at 34.1% heat release due to auto ignition, a knock onset crank angle value of 10.3° aTDC and ignition timing of −24.7° aTDC. This work has demonstrated that combustion at a fixed f-EGAI can be maintained through advanced ignition control of CIM without experiencing heavy knocking events.
Engine knock and misfire are barriers to pathways leading to high-efficiency Spark-Ignited (SI) Natural Gas engines. The general tendency to knock is highly dependent on engine operating conditions and the fuel reactivity. The problem is further complicated by low emission limits and the wide range of chemical reactivity in pipeline quality natural gas. Depending on the region and the source of the natural gas, its reactivity, described by its methane number (analogous to the octane number for liquid SI fuels) can span from 65–95. In order to realize diesel-like efficiencies, SI natural gas engines must be designed to operate at high BMEP near knock limits over a wide range of fuel reactivity. This requires a deep understanding regarding the combustion-engine interactions pertaining to flame propagation and end-gas autoignition (EGAI). However, EGAI, if controlled, provides an opportunity to increase SI natural gas engine efficiency by increasing combustion rate and the total burned fuel, mitigating the effects of the slow flame speeds of natural gas fuels which generally reduce BMEP and increase unburned hydrocarbon emissions. For this reason, in order to study EGAI phenomenon, the present work highlights multi-dimensional computational fluid dynamics (CFD) models of the Cooperative Fuel Research (CFR) engine. The CFR engine models are used to investigate fuel-engine interactions that lead to EGAI with natural gas, including effects of fuel reactivity, engine operating parameters, and exhaust gas recirculation (EGR). A Three-Pressure Analysis, performed with GT-Power, was used to estimate initial and boundary conditions for the three-dimensional CFD model. CONVERGE CFD v2.4 was used for the three-dimensional CFD modeling where the level set G-Equation model and SAGE detailed chemical kinetics solver were used. An assessment of the different modeling approaches is also provided to evaluate their limitations, advantages and disadvantages, and for which situations they are most applicable. Model validation was performed with experimental data taken with a CFR engine over varying compression ratio, CA50, EGR fraction, and IMEP and shows good agreement in Peak Cylinder Pressure (PCP), PCP crank angle, and the location of the 10%, 50%, and 90% mass fraction burned (CA10, CA50, and CA90, respectively). The models can predict the onset crank angle and pressure rise rate for light, medium, and heavy EGAI under a variety of fuel reactivities and engine operating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.