Abstract. In this article we investigate the use of fixed point iterations to solve the Galerkin approximation of strictly monotone problems. As opposed to Newton's method, which requires information from the previous iteration in order to linearise the iteration matrix (and thereby to recompute it) in each step, the alternative method used in this article exploits the monotonicity properties of the problem, and only needs the iteration matrix calculated once for all iterations of the fixed point method. We outline the abstract a priori and a posteriori analysis for the iteratively obtained solutions, and apply this to a finite element approximation of a second-order elliptic quasilinear boundary value problem. We show both theoretically, as well as numerically, how the number of iterations of the fixed point method can be restricted in dependence of the mesh size, or of the polynomial degree, to obtain optimal convergence. Using the a posteriori error analysis we also devise an adaptive algorithm for the generation of a sequence of Galerkin spaces (adaptively refined finite element meshes in the concrete example) to minimise the number of iterations on each space.
In this article, we develop the a priori and a posteriori error analysis of hp-version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ R d , d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm, which are explicit in the local mesh size and local polynomial degree of the approximating finite element method. A series of numerical experiments illustrate the performance of the proposed a posteriori error indicators within an automatic hp-adaptive refinement algorithm.
A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.For more information, please contact eprints@nottingham.ac.uk TWO-GRID hp-VERSION DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR SECOND-ORDER QUASILINEAR ELLIPTIC PDESSCOTT CONGREVE, PAUL HOUSTON, AND THOMAS P. WIHLERAbstract. In this article we propose a class of so-called two-grid hp-version discontinuous Galerkin finite element methods for the numerical solution of a second-order quasilinear elliptic boundary value problem of monotone type. The key idea in this setting is to first discretise the underlying nonlinear problem on a coarse finite element space V (T H , P ). The resulting 'coarse' numerical solution is then exploited to provide the necessary data needed to linearise the underlying discretisation on the finer space V (T h , p); thereby, only a linear system of equations is solved on the richer space V (T h , p). In this article both the a priori and a posteriori error analysis of the two-grid hp-version discontinuous Galerkin finite element method is developed. Moreover, we propose and implement an hp-adaptive two-grid algorithm, which is capable of designing both the coarse and fine finite element spaces V (T H , P ) and V (T h , p), respectively, in an automatic fashion. Numerical experiments are presented for both two-and three-dimensional problems; in each case, we demonstrate that the cpu time required to compute the numerical solution to a given accuracy is typically less when the two-grid approach is exploited, when compared to the standard discontinuous Galerkin method.
This paper presents an hp a posteriori error analysis for the 2D Helmholtz equation that is robust in the polynomial degree p and the wave number k. For the discretization, we consider a discontinuous Galerkin formulation that is unconditionally well posed. The a posteriori error analysis is based on the technique of equilibrated fluxes applied to a shifted Poisson problem, with the error due to the nonconformity of the discretization controlled by a potential reconstruction. We prove that the error estimator is both reliable and efficient, under the condition that the initial mesh size and polynomial degree is chosen such that the discontinuous Galerkin formulation converges, i.e., it is out of the regime of pollution. We confirm the efficiency of an hp-adaptive refinement strategy based on the presented robust a posteriori error estimator via several numerical examples.
We present a numerical study to investigate the conditioning of the plane wave discontinuous Galerkin discretization of the Helmholtz problem. We provide empirical evidence that the spectral condition number of the plane wave basis on a single element depends algebraically on the mesh size and the wave number, and exponentially on the number of plane wave directions; we also test its dependence on the element shape. We show that the conditioning of the global system can be improved by orthogonalization of the local basis functions with the modified Gram-Schmidt algorithm, which results in significantly fewer GMRES iterations for solving the discrete problem iteratively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.