Proteins bind the surfaces of nanoparticles, and biological materials in general, immediately upon introduction of the materials into a physiological environment. The further biological response of the body is influenced by the nanoparticle–protein complex. The nanoparticle's composition and surface chemistry dictate the extent and specificity of protein binding. Protein binding is one of the key elements that affects biodistribution of the nanoparticles throughout the body. Here we review recent research on nanoparticle physicochemical properties important for protein binding, techniques for isolation and identification of nanoparticle-bound proteins, and how these proteins can influence particle biodistribution and biocompatibility. Understanding the nanoparticle-protein complex is necessary for control and manipulation of protein binding, and allows for improved engineering of nanoparticles with favorable bioavailability and biodistribution.
Most research on the toxicology of nanomaterials has focused on the effects of nanoparticles that enter the body accidentally. There has been much less research on the toxicology of nanoparticles that are used for biomedical applications, such as drug delivery or imaging, in which the nanoparticles are deliberately placed in the body. Moreover, there are no harmonized standards for assessing the toxicity of nanoparticles to the immune system (immunotoxicity). Here we review recent research on immunotoxicity, along with data on a range of nanotechnology-based drugs that are at different stages in the approval process. Research shows that nanoparticles can stimulate and/or suppress the immune responses, and that their compatibility with the immune system is largely determined by their surface chemistry. Modifying these factors can significantly reduce the immunotoxicity of nanoparticles and make them useful platforms for drug delivery.
Nanoparticles have unique physicochemical properties which make them promising platforms for drug delivery. However, immune cells in the bloodstream (such as monocytes, platelets, leukocytes, and dendritic cells) and in tissues (such as resident phagocytes) have a propensity to engulf and eliminate certain nanoparticles. A nanoparticle's interaction with plasma proteins (opsonins) and blood components (via hemolysis, thrombogenicity and complement activation) may influence uptake and clearance and hence potentially affect distribution and delivery to the intended target sites. Nanoparticle uptake by the immune cells is influenced by many factors. Different nanoparticles have been shown to act on different pathways, while various characteristics/properties also affect which pathway is employed for particle internalization. Nanoparticle protein binding occurs almost instantaneously once the particle enters biological medium, and the physical properties of such a particle-protein complex are often different than those of the formulated particle. These new properties can contribute to different biological responses and change nanoparticle biodistribution. Therefore, in the situation when specific delivery to immune cells is not desired, the ideal nanoparticle platform is the one whose integrity is not disturbed in the complex biological environment, which provides extended circulation in the blood to maximize delivery to the target site, is not toxic to blood cellular components, and is "invisible" to the immune cells which can remove it from circulation. This review discusses the most recent data on nanoparticle interactions with blood components and how particle size and surface charge define their hematocompatibility. This includes properties which determine particle interaction with plasma proteins and uptake by macrophages. We will also provide an overview of in vitro methods useful in identifying interactions with components of the immune system and the potential effects of such interaction on particle distribution to tissues.
Nanoparticle size and plasma binding profile contribute to a particle’s longevity in the bloodstream, which can have important consequences for therapeutic efficacy. In this study an approximate doubling in nanoparticle hydrodynamic size was observed upon in vitro incubation of 30- and 50-nm colloidal gold in human plasma. Plasma proteins that bind the surface of citrate-stabilized gold colloids have been identified. Effects of protein binding on the nanoparticle hydrodynamic size, elements of coagulation, and the complement system have been investigated. The difference in size measurements obtained from dynamic light scattering, electron microscopy, and scanning probe microscopy are also discussed.
Hemolysis (destruction of red blood cells) in vivo can lead to anemia, jaundice and other pathological conditions, therefore the hemolytic potential of all intravenously administered pharmaceuticals must be evaluated. Nanotechnology-derived devices and drug carriers are emerging as alternatives to conventional small-molecule drugs, and in vitro evaluation of their biocompatibility with blood components is a necessary part of early preclinical development. The small size and unique physicochemical properties of nanoparticles may cause their interactions with erythrocytes to differ from those observed for conventional pharmaceuticals, and may also cause interference with standardized in vitro tests. Separating true hemolytic responses from the false-positive or false-negative results caused by particle interference is important for correct interpretation of these tests. Here we describe validation of an in vitro assay for the analysis of nanoparticle hemolytic properties, and discuss observed nano-interferences with the assay. We propose alternative methods to avoid misleading results from nanoparticles, and discuss the potential relevance of nanoparticle in vitro hemolytic properties to in vivo systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.