Deciphering the signaling pathways that govern stimulation of naïve CD4+ T helper cells by antigen-presenting cells via formation of the immunological synapse is key to a fundamental understanding of the progression of successful adaptive immune response. The study of T cell – APC interactions in vitro is challenging, however, due to the difficulty of tracking individual, nonadherent cell pairs over time. Studying single cell dynamics over time reveals rare, but critical, signaling events that might be averaged out in bulk experiments, but these less common events are undoubtedly important for an integrated understanding of a cellular response to its microenvironment. We describe a novel application of microfluidic technology that overcomes many limitations of conventional cell culture and enables the study of hundreds of passively sequestered hematopoietic cells for extended periods of time. This microfluidic cell trap device consists of 440 18 μm×18 μm×10 μm PDMS, bucket-like structures opposing the direction of flow which serve as corrals for cells as they pass through the cell trap region. Cell viability analysis revealed that more than 70% of naïve CD4+ T cells (TN), held in place using only hydrodynamic forces, subsequently remain viable for 24 hours. Cytosolic calcium transients were successfully induced in TN cells following introduction of chemical, antibody, or cellular forms of stimulation. Statistical analysis of TN cells from a single stimulation experiment reveals the power of this platform to distinguish different calcium response patterns, an ability that might be utilized to characterize T cell signaling states in a given population. Finally, we investigate in real-time contact and non-contact-based interactions between primary T cells and dendritic cells, two main participants in the formation of the immunological synapse. Utilizing the microfluidic traps in a daisy-chain configuration allowed us to observe calcium transients in TN cells exposed only to media conditioned by secretions of lipopolysaccharide-matured dendritic cells, an event which is easily missed in conventional cell culture where large media-to-cell ratios dilute cellular products. Further investigation into this intercellular signaling event indicated that LPS-matured dendritic cells, in the absence of antigenic stimulation, secrete chemical signals that induce calcium transients in TN cells. While the stimulating factor(s) produced by the mature dendritic cells remains to be identified, this report illustrates the utility of these microfluidic cell traps for analyzing arrays of individual suspension cells over time and probing both contact-based and inter-cellular signaling events between one or more cell populations.
Topical antimicrobicides hold great promise in reducing human immunodeficiency virus (HIV) transmission. Amphibian skin provides a rich source of broad-spectrum antimicrobial peptides including some that have antiviral activity. We tested 14 peptides derived from diverse amphibian species for the capacity to inhibit HIV infection. Three peptides (caerin 1.1, caerin 1.9, and maculatin 1.1) completely inhibited HIV infection of T cells within minutes of exposure to virus at concentrations that were not toxic to target cells. These peptides also suppressed infection by murine leukemia virus but not by reovirus, a structurally unrelated nonenveloped virus. Preincubation with peptides prevented viral fusion to target cells and disrupted the HIV envelope. Remarkably, these amphibian peptides also were highly effective in inhibiting the transfer of HIV by dendritic cells (DCs) to T cells, even when DCs were transiently exposed to peptides 8 h after virus capture. These data suggest that amphibian-derived peptides can access DC-sequestered HIV and destroy the virus before it can be transferred to T cells. Thus, amphibian-derived antimicrobial peptides show promise as topical inhibitors of mucosal HIV transmission and provide novel tools to understand the complex biology of HIV capture by DCs.
The migration of polymorphonuclear leukocytes from the blood to sites of infection in tissues is a hallmark of the innate immune response. Formylated peptides produced as a byproduct of bacterial protein synthesis are powerful chemoattractants for leukocytes. Formyl peptides bind to two different G protein-coupled receptors (formyl peptide receptor (FPR) and the low affinity formyl peptide receptor-like-1 (FPRL1)) to initiate a signal transduction cascade leading to cell activation and migration. Our analysis of expressed sequences from many cDNA libraries draws attention to the fact that FPRs are widely expressed in nonlymphoid tissues. Here we demonstrate that FPRs are expressed by normal human lung and skin fibroblasts and the human fibrosarcoma cell line HT-1080. The expression on fibroblasts of receptors for bacteria-derived peptides raises questions about the possible function of these receptors in nonleukocyte cells. We studied the function of FPRs on fibroblasts and find that stimulation with fMLP triggers dose-dependent migration of these cells. Furthermore, fMLP induces signal transduction including intracellular calcium flux and a transient increase in F-actin. The fMLP-induced adhesion and motility of fibroblasts on fibronectin require functional protein kinase C and phosphatidylinositol 3-kinase. This first report of a functional formyl peptide receptor in cells of fibroblast origin opens new possibilities for the role of fibroblasts in innate immune responses.
Helicobacter pylori are Gram-negative bacteria that persistently colonize the human gastric mucosa despite the recruitment of immune cells. The H. pylori vacuolating cytotoxin (VacA) recently has been shown to inhibit stimulation-induced proliferation of primary human CD4+ T cells. In this study, we investigated effects of VacA on the proliferation of various other types of primary human immune cells. Intoxication of PBMC with VacA inhibited the stimulation-induced proliferation of CD4+ T cells, CD8+ T cells, and B cells. VacA also inhibited the proliferation of purified primary human CD4+ T cells that were stimulated by dendritic cells. VacA inhibited both T cell-induced and PMA/anti-IgM-induced proliferation of purified B cells. Intoxication with VacA did not alter the magnitude of calcium flux that occurred upon stimulation of CD4+ T cells or B cells, indicating that VacA does not alter early signaling events required for activation and proliferation. VacA reduced the mitochondrial membrane potential of CD4+ T cells, but did not reduce the mitochondrial membrane potential of B cells. We propose that the immunomodulatory actions of VacA on T and B lymphocytes, the major effectors of the adaptive immune response, may contribute to the ability of H. pylori to establish a persistent infection in the human gastric mucosa.
Ligands of CCR5, the major coreceptor of HIV-1, costimulate T lymphocyte activation. However, the full impact of CCR5 expression on T cell responses remains unknown. Here, we show that compared with CCR5 ؉/؉ , T cells from CCR5 ؊/؊ mice secrete lower amounts of IL-2, and a similar phenotype is observed in humans who lack CCR5 expression (CCR5-⌬32/⌬32 homozygotes) as well as after Ab-mediated blockade of CCR5 in human T cells genetically intact for CCR5 expression. Conversely, overexpression of CCR5 in human T cells results in enhanced IL-2 production. CCR5 surface levels correlate positively with IL-2 protein and mRNA abundance, suggesting that CCR5 affects IL-2 gene regulation. Signaling via CCR5 resulted in NFAT transactivation in T cells that was blocked by Abs against CCR5 agonists, suggesting a link between CCR5 and downstream pathways that influence IL-2 expression. Furthermore, murine T cells lacking CCR5 had reduced levels of intranuclear NFAT following activation. Accordingly, CCR5 expression also promoted IL-2-dependent events, including CD25 expression, STAT5 phosphorylation, and T cell proliferation. We therefore suggest that by influencing a NFAT-mediated pathway that regulates IL-2 production and IL-2-dependent events, CCR5 may play a critical role in T cell responses. In accord with our prior inferences from geneticepidemiologic studies, such CCR5-dependent responses might constitute a viral entry-independent mechanism by which CCR5 may influence HIV-AIDS pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.