Helicobacter pylori are Gram-negative bacteria that persistently colonize the human gastric mucosa despite the recruitment of immune cells. The H. pylori vacuolating cytotoxin (VacA) recently has been shown to inhibit stimulation-induced proliferation of primary human CD4+ T cells. In this study, we investigated effects of VacA on the proliferation of various other types of primary human immune cells. Intoxication of PBMC with VacA inhibited the stimulation-induced proliferation of CD4+ T cells, CD8+ T cells, and B cells. VacA also inhibited the proliferation of purified primary human CD4+ T cells that were stimulated by dendritic cells. VacA inhibited both T cell-induced and PMA/anti-IgM-induced proliferation of purified B cells. Intoxication with VacA did not alter the magnitude of calcium flux that occurred upon stimulation of CD4+ T cells or B cells, indicating that VacA does not alter early signaling events required for activation and proliferation. VacA reduced the mitochondrial membrane potential of CD4+ T cells, but did not reduce the mitochondrial membrane potential of B cells. We propose that the immunomodulatory actions of VacA on T and B lymphocytes, the major effectors of the adaptive immune response, may contribute to the ability of H. pylori to establish a persistent infection in the human gastric mucosa.
Helicobacter pylori genomes contain about 30 hop genes that encode outer membrane proteins. H. pylori hopQ alleles exhibit a high level of genetic diversity, and two families of hopQ alleles have been described. Type I hopQ alleles are found more commonly in cag-positive H. pylori strains from patients with peptic ulcer disease than in cag-negative strains from patients without ulcer disease. In this study, we mutated hopQ in four H. pylori strains that each contained a type I hopQ allele, and then analyzed interactions of the wild-type and hopQ mutant strains with AGS cells. In comparison to the wild-type strains, two of the hopQ mutant strains exhibited increased adherence to AGS cells and two hopQ mutants did not exhibit any detectable differences in adherence. Higher levels of tyrosine-phosphorylated CagA were detected when AGS cells were co-cultured with a hyper-adherent hopQ mutant strain than when co-cultured with the corresponding wild-type strain. These data indicate that in some strains of H. pylori, the HopQ protein can attenuate bacterial adherence to gastric epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.