No abstract
The objective of this study was to examine the differences in the biochemical and elemental stoichiometry of a freshwater centric diatom, Stephanodiscus minutulus (Grun.), under various nutrient regimes. Stephanodiscus minutulus was grown at μ or 22% of μ under limitation by silicon, nitrogen, or phosphorus. Cell sizes for nutrient-limited cultures were significantly smaller than the non-limited cell sizes, with N-limited cells being significantly smaller than all other treatments. Compared with the nutrient-replete treatment, both carbohydrates and lipids increased in Si- and P-limited cells, whereas carbohydrates increased but proteins decreased in N-limited cells. All of the growth-limited cells showed an increase of carbohydrate and triglyceride, and a decrease of cell size and polar lipids as a percentage of total lipids. The non-limited cells also had a significantly higher chl a concentration and galactolipids as a percentage of total lipids than any of the limited treatments, and the low-Si and low-P cells had significantly higher values than the low-N cells. The particulate C concentrations showed significant differences between treatments, with the Si- and P-limited treatments being significantly higher than the N- and non-limited treatments. Particulate Si did not show a strong relationship with any of the parameters measured, and it was the only parameter with no differences between treatments. The low-Si cells had a significantly higher P content (about two times more) than any other treatment, presumably owing to the luxury consumption of P, and a correspondingly high phospholipid concentration. The elemental data showed that S. minutulus had a high P demand with low optimum N:P (4) and Si:P (10) ratios and a C:N:P ratio of 109:16:2.3. The particulate C showed a positive relationship with POM (r = 0.93), dry weight (r = 0.88), lipid (r = 0.87) and protein (r = 0.84, all P < 0.0001). Particulate N showed a positive relationship with galactolipids (r = 0.95), protein (r = 0.90), dry weight (r = 0.78), lipid (r = 0.75), and cell volume (r = 0.64, all P < 0.0001). It is evident that nutrient limitation in the freshwater diatom S. minutulus has pronounced effects on its biochemical and elemental stoichiometry.
In vitro chemical safety testing methods offer the potential for efficient and economical tools to provide relevant assessments of human health risk. To realize this potential, methods are needed to relate in vitro effects to in vivo responses, i.e., in vitro to in vivo extrapolation (IVIVE). Currently available IVIVE approaches need to be refined before they can be utilized for regulatory decision-making. To explore the capabilities and limitations of IVIVE within this context, the U.S. Environmental Protection Agency Office of Research and Development and the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods co-organized a workshop and webinar series. Here, we integrate content from the webinars and workshop to discuss activities and resources that would promote inclusion of IVIVE in regulatory decision-making. We discuss properties of models that successfully generate predictions of in vivo doses from effective in vitro concentration, including the experimental systems that provide input parameters for these models, areas of success, and areas for improvement to reduce model uncertainty. Finally, we provide case studies on the uses of IVIVE in safety assessments, which highlight the respective differences, information requirements, and outcomes across various approaches when applied for decision-making.
1. Cell size and volume changed as a function of the type of resource limitation, with nitrogen‐limited cells being smaller and less dense and phosphorus‐limited cells being larger and more dense than non‐limited cells. 2. The major biochemical constituents of the green alga Ankistrodesmus falcatus varied as a function of nitrogen or phosphorus limitation (15% of maximum growth rate) compared to cells growing at their maximum rate. Nitrogen‐limited cells had much lower protein content and phosphorus‐limited cells had higher carbohydrate and lipid contents than cells growing under no limitation. 3. Phosphorus‐limited cells had a higher total lipid content than either nitrogen‐limited or non‐limited cells, but the lipid class composition was similar. 4. The protein : lipid ratio was lowest (0.38) in the nitrogen‐limited cells, intermediate in the phosphorus‐limited cells (0.44) and highest in the non‐limited control cells (1.14).
1. Food quality was at least as important as food quantity for both fecundity and population growth responses of the cladoceran Daphnia pulicaria fed the green alga Ankistrodesmus falcatus grown under N limitation, P limitation, or non‐limited condition. 2. The fecundity of D. pulicaria was reduced under conditions of low food quality (low N or low P) compared with that for animals fed control non‐limited algae regardless of ration size. The reduced fecundity of D. pulicaria fed P‐limited food could be partially alleviated by increasing the ration (hence, compensation), but such was not the case for animals fed N‐limited food. 3. Population growth rates of D. pulicaria (rmax) were significantly reduced under conditions of low‐quality food for both N‐limited and P‐limited algae. Population growth rates were unaffected by ration size, indicating no compensation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.