Runoff from agricultural lands and farm animal feedlots is one of the major sources of fecal coliforms in surface waters, and fecal coliform (FC) bacteria concentrations tend to vary with season because of seasonal variations in climatic factors. However, El Niño -Southern Oscillation (ENSO) events may affect the extent and patterns of seasonality in FC levels in coastal waters. Water quality monitoring data for shellfish management collected during El Niño (1990, 1992, 1997), and La Niña (1999, 2000) years were analyzed to evaluate the extent to which these events influenced Pearl River stage, and bacterial levels, water temperature, and salinity in the western part of Mississippi Sound. Models to predict FC levels in relation to various environmental factors were also developed. In 1990, 1992 and 1997, FC geometric mean counts peaked in late winter (January/February) reaching 120 MPN (February 1990), 165 MPN (January 1992), and 86 MPN (January 1997), and then decreased considerably during spring and summer (1.2 – 19 MPN). Thereafter, FC abundance increased slightly in fall and early winter (1.9 – 24 MPN). Fecal coliform abundance during the 2000 La Niña year was much lower (1.0 – 10.3 MPN) than in 1992 (1.2 – 165 MPN), and showed no seasonal pattern from January to August, perhaps due to the relative scarcity of rainfall in 2000. In 1995 (ENSO neutral year), peak geometric mean FC count (46 MPN) was lower than during El Niño years and occurred in early spring (March). The seasonal and between year variations in FC levels determined the number of days during which the conditionally approved shellfish growing area was opened for harvesting shellfish. For example, from January to April 1997, the area was not opened for shellfish harvesting, whereas in 2000, the number of days during which the area was opened ranged from 6 – 27 (January to April) to 24 – 26 (October to December). ENSO events thus influenced the extent and timing of the peak levels of fecal coliforms in Mississippi Sound. Models consisting of one or more of the variables: Pearl River stage, water temperature, and salinity were developed to predict FC concentrations in the Sound. The model parameter(s) explained 56 to 91% of the variations in FC counts. Management of shellfish in Mississippi Sound can be improved by utilizing information on the forecasted three to seven years occurrence of ENSO events. In addition, since Pearl River stage was the most important variable predicting FC concentration in the Sound, a study of the levels and sources of FC bacteria in the river, especially the middle and lower sections, is needed for developing a management plan for reducing FC bacteria pollution in the Sound.