ITER Nb3Sn strand quality verification tests require large quantities of precise measurements. Therefore regular cross-checking between testing laboratories is critically important. In this paper, we present results from a cross-checking test of 140 samples between the National High Magnetic Field Laboratory, USA and the University of Twente, the Netherlands. The tests comprise measurements at 4.2 K on critical current, RRR and hysteresis loss, while at room temperature the chromium layer thickness, Cu/nonCu ratio, filament twist pitch, and diameter were determined. Our results show very good agreement between the two labs. The reasons for small random discrepancies are discussed.
Heat treatment is critically important to the performance of Nb3Sn superconducting strands. For very large Nb3Sn magnet coils, such as the International Thermonuclear Experimental Reactor (ITER) Central Solenoid (CS) coils, heat treatment carries risk of temperature and time excursion, which may result in performance degradation. Therefore, it is prudent to study the effect of possible excursion on Nb3Sn performance. In this study, Nb3Sn strands used for ITER CS coils are heat treated at different temperatures for different times. Their critical current, residual resistance ratio and hysteresis losses are measured. It is found that in the range we studied, critical current and hysteresis losses do not change significantly. Residual resistance ratio, however, decreases with increasing heat treatment temperature and time. This is attributed to the diffusion of metallic elements from the plated Cr layer to the copper stabilizer. Based on a model of metallic elements diffusion, a numerical code is developed to predict residual resistance ratio as a function of heat treatment temperature and time.
The mixing of fuel and air in combustion systems plays a key role in overall operability and emissions performance. Such systems are aiso being looked to for operation on a wide array of potential fuel types, including those derived from renewable .sources such as biomass or agricultural waste. The optimization of premixers for such sy.items is greatly enhanced if efficient design tools can be utilized. The increa.ted capability of computational systems has allowed tools such as computational fluid dynamics to be regularly used for such purpose. However, to be applied with confidence, validation is required. In the present work, a systematic evaluation of fuel mixing in a specific geometry, which entails cross flow fuei injection into axial nonswirling air streams has been carried out for methane and hydrogen. Fuel concentration is measured at different pianes downstream of the point of injection. In parallel, different computational fluid dynamics approaches are used to predict the concentration fields resulting from the mixing of fuel and air. Different steady turbulence models including variants of Reynolds averaged Navier-Stokes (RANS) have been applied. In addition, unsteady RANS and large eddy simulation are used. To accomplish mass transport with any of the RANS approaches, the concept of the turbulent Schmidt number is generally used. As a result, the sensitivity of the RANS simulations to different turbulent Schmidt number values is also examined. In general, the results show that the Reynolds stress model, with use of an appropriate turbulent Schmidt number for the fuei used, provides the best agreement with the measured values of the variation in fuel distribution over a given plane in a relatively time efficient manner. It is also found that, for a fixed momentum flux ratio, both hydrogen and methane penetrate and disperse in a similar manner for the flow field studied despite their significant differences in density and diffusivity.
Hydrogen is a fuel of interest to the combustion community research as a promising sustainable alternative fuel to replace fossil fuels. The combustion of hydrogen produces only emission of water vapor and NOx. To alleviate the NOx emission, lean combustion has been proposed and utilized in last three decades for natural gas. Therefore, evaluation of mixing properties of both methane and hydrogen in lean combustion technology such as premixers is crucial for design purposes. Increased capability of computational systems has allowed tools such as computational fluid dynamics to be regularly used for purpose of design screening. In the present work, systematic evaluation of different CFD approaches is accomplished for axial injection of fuel into non swirling air. The study has been undertaken for both methane and hydrogen. Different Reynolds Averaged Navier Stokes (RANS) turbulence models including k–ε and RSM, which are relatively attractive as being computationally efficient, are evaluated. Further, the sensitivity of RANS models to different turbulent Schmidt number (Sct), as an important parameter in mass transport analysis, has been investigated. To evaluate the numerical results, fuel concentration is measured in different locations downstream of the injection point. This is accomplished by means of flame ionization detector (FID). Finally, a comprehensive comparison has been made between numerical and experimental results to identify the best numerical approach. To provide quantitative assessment, the simulations follow a statistically design matrix which allows analysis of variance to be used to identify the preferred simulation strategies. The results suggest high sensitivity of numerical results to different Sct and relatively low sensitivity to turbulence models. However, this general trend is the opposite for radial fuel injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.