Background Ethanol is metabolized by a two-step process in which alcohol dehydrogenase (ADH) oxidizes ethanol to acetaldehyde, which is further oxidized to acetate by aldehyde dehydrogenase (ALDH). Although variation in ethanol metabolism in humans strongly influences the propensity to chronically abuse alcohol, few data exist on the behavioral effects of altered ethanol metabolism. Here, we used the nematode C. elegans to directly examine how changes in ethanol metabolism alter behavioral responses to alcohol during an acute exposure. Additionally, we investigated ethanol solution osmolarity as a potential explanation for contrasting published data on C. elegans ethanol sensitivity. Methods We developed a gas chromatography assay and validated a spectrophotometric method to measure internal ethanol in ethanol-exposed worms. Further, we tested the effects of mutations in ADH and ALDH genes on ethanol tissue accumulation and behavioral sensitivity to the drug. Finally, we tested the effects of ethanol solution osmolarity on behavioral responses and tissue ethanol accumulation. Results Only a small amount of exogenously applied ethanol accumulated in the tissues of C. elegans and consequently their tissue concentrations were similar to those that intoxicate humans. Independent inactivation of an ADH-encoding gene (sodh-1) or an ALDH-encoding gene (alh-6 or alh-13) increased the ethanol concentration in worms and caused hypersensitivity to the acute sedative effects of ethanol on locomotion. We also found that the sensitivity to the depressive effects of ethanol on locomotion is strongly influenced by the osmolarity of the exogenous ethanol solution. Conclusions Our results indicate that ethanol metabolism via ADH and ALDH has a statistically discernable but surprisingly minor influence on ethanol sedation and internal ethanol accumulation in worms. In contrast, the osmolarity of the medium in which ethanol is delivered to the animals has a more substantial effect on the observed sensitivity to ethanol.
Alcohol directly modulates the BK potassium channel to alter behaviors in species ranging from invertebrates to humans. In the nematode Caenorhabditis elegans, mutations that eliminate the BK channel, SLO-1, convey dramatic resistance to intoxication by ethanol. We hypothesized that certain conserved amino acids are critical for ethanol modulation, but not for basal channel function. To identify such residues, we screened C. elegans strains with different missense mutations in the SLO-1 channel. A strain with the SLO-1 missense mutation T381I in the RCK1 domain was highly resistant to intoxication. This mutation did not interfere with other BK channeldependent behaviors, suggesting that the mutant channel retained normal in vivo function. Knock-in of wild-type versions of the worm or human BK channel rescued intoxication and other BK channel-dependent behaviors in a slo-1-null mutant background. In contrast, knock-in of the worm T381I or equivalent human T352I mutant BK channel selectively rescued BK channel-dependent behaviors while conveying resistance to intoxication. Single-channel patch-clamp recordings confirmed that the human BK channel engineered with the T352I missense mutation was insensitive to activation by ethanol, but otherwise had normal conductance, potassium selectivity, and only subtle differences in voltage dependence. Together, our behavioral and electrophysiological results demonstrate that the T352I mutation selectively disrupts ethanol modulation of the BK channel. The T352I mutation may alter a binding site for ethanol and/or interfere with ethanol-induced conformational changes that are critical for behavioral responses to ethanol.
Symptoms of withdrawal from chronic alcohol use are a driving force for relapse in alcohol dependence. Thus, uncovering molecular targets to lessen their severity is key to breaking the cycle of dependence. Using the nematode , we tested whether one highly conserved ethanol target, the large-conductance, calcium-activated potassium channel (known as the BK channel or Slo1), modulates ethanol withdrawal. Consistent with a previous report, we found that displays withdrawal-related behavioral impairments after cessation of chronic ethanol exposure. We found that the degree of impairment is exacerbated in worms lacking the worm BK channel, SLO-1, and is reduced by selective rescue of this channel in the nervous system. Enhanced SLO-1 function, via gain-of-function mutation or overexpression, also dramatically reduced behavioral impairment during withdrawal. Consistent with these results, we found that chronic ethanol exposure decreased SLO-1 expression in a subset of neurons. In addition, we found that the function of a distinct, conserved Slo family channel, SLO-2, showed an inverse relationship to withdrawal behavior, and this influence depended on SLO-1 function. Together, our findings show that modulation of either Slo family ion channel bidirectionally regulates withdrawal behaviors in worm, supporting further exploration of the Slo family as targets for normalizing behaviors during alcohol withdrawal.
For animals inhabiting multiple environments, the ability to select appropriate behaviors is crucial as their adaptability is often context dependent. Caenorhabditis elegans uses distinct gaits to move on land and in water. Gait transitions can potentially coordinate behaviors associated with distinct environments. We investigated whether land and water differentially affect the behavioral repertoire of C. elegans. Swimming worms interrupted foraging, feeding, egg-laying and defecation. Exogenous dopamine induced bouts of these land-associated behaviors in water. Our finding that worms do not drink fluid while immersed may explain why higher drug doses are required in water than on land to elicit the same effects. C. elegans is a valid model to study behavioral hierarchies and how environmental pressures alter their balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.