In alcohol-naïve systems, ethanol (<100 mM) exposure of calcium-gated BK channels perturbs physiology and behavior. Brief (several minutes) ethanol exposure usually leads to increased BK current, which results from ethanol interaction with a pocket mapped to the BK channel-forming slo1 protein cytosolic tail domain. The importance of this region in alcohol-induced intoxication has been addressed in Caenorhabditis elegans slo1 mutants. However, ethanol-induced BK activation is not universal as refractoriness and inhibition have been reported. The final effect depends on many factors, including intracellular calcium levels, slo1 isoform, BK beta subunit composition, post-translational modification of BK proteins, channel lipid microenvironment and type of ethanol administration. Studies in Drosophila melanogaster, Caenorhabditis elegans and rodents show that protracted/repeated ethanol administration leads to tolerance to alcohol-induced modification of BK-driven physiology and behavior. Unveiling the mechanisms underlying tolerance is of major importance, as tolerance to alcohol has been proposed as predictor of risk for alcoholism.