Cerebral palsy (CP) may lead to profound weakness in affected portions of the extremities and trunk. Knowing the mechanisms underlying muscle weakness will help to better design interventions for increasing force production in children with CP. This study quantified voluntary muscle activation, contractile properties, and fatigability of the quadriceps femoris and triceps surae in children with and without CP. Twelve children with CP (7-13 years) and 10 unaffected children (controls, 8-12 years) were assessed for (1) voluntary muscle activation during maximum voluntary isometric contractions (MVICs); (2) antagonist coactivation during agonist MVICs; (3) contractile properties, and (4) fatigability using electrically elicited tests. Children with CP were significantly weaker, had lower agonist voluntary muscle activation, and greater antagonist coactivation. In children with CP, the quadriceps normalized force-frequency relationship (FFR) was shifted upward at low frequencies and was less fatigable than controls. No differences were seen between groups in the normalized FFR and fatigability of the triceps surae. In addition, no differences were seen in the sum of the time to peak tension and half-relaxation times between groups for either muscle. Because children with CP demonstrated large deficits in voluntary muscle activation, using voluntary contractions for strength training may not produce forces sufficient to induce muscle hypertrophy. Techniques such as enhanced feedback and neuromuscular electrical stimulation may be helpful for strengthening muscles that cannot be sufficiently recruited with voluntary effort. Keywordsantagonist coactivation; cerebral palsy; contractile properties; strength; voluntary muscle activation Low force production has been documented in children with cerebral palsy (CP) compared to unaffected children, and attributed to either incomplete recruitment or decreased motor unit discharge rates during maximum voluntary contractions. 7, 8 , 12 , 13 ,31 We are unaware, however, of published studies that have investigated whether children with CP can obtain
Background-To date, no reports have investigated neuromuscular electrical stimulation (NMES) to increase muscle force production of children with cerebral palsy (CP) using high-force contractions and low repetitions.
Background and Purpose. Researchers studying central activation of muscles in elderly subjects (≥65 years of age) have investigated activation in only the nonfatigued state. This study examined the ability of young and elderly people to activate their quadriceps femoris muscles voluntarily under both fatigued and nonfatigued conditions to determine the effect of central activation failure on age-related loss of force. Subjects and Methods. Twenty young subjects (11 men, 9 women; mean age=22.67 years, SD=4.14, range=18–32 years) and 17 elderly subjects (8 men, 9 women; mean age=71.5 years, SD=5.85, range=65–84 years) participated in this study. Subjects were seated on a dynamometer and stabilized. Central activation was quantified, based on the change in force produced by a 100-Hz, 12-pulse electrical train that was delivered during a 3- to 5-second isometric maximum voluntary contraction (MVC) of the quadriceps femoris muscle. Next, subjects performed 25 MVCs (a 5-second contraction with 2 seconds of rest) to fatigue the muscle. During the last MVC, central activation was measured again. Results. In the nonfatigued state, elderly subjects had lower central activation than younger subjects. In the fatigued state, this difference became larger. Discussion and Conclusion. Central activation of the quadriceps femoris muscle in elderly subjects was reduced in both the fatigued and nonfatigued states when compared with young subjects. Some part of age-related weakness, therefore, may be attributed to failure of central activation in both the fatigued and nonfatigued states.
Background Weakness of the quadriceps femoris muscle after anterior cruciate ligament injury and reconstruction has been attributed to incomplete voluntary activation of the muscle. The literature is conflicting on the incidence of incomplete voluntary quadriceps activation after anterior cruciate ligament injury because of differences in testing methods and population biases. The purpose of this study was to systematically examine the incidence and severity of quadriceps voluntary activation failure in both lower extremities after acute anterior cruciate ligament injury. We hypothesized that the incidence of quadriceps inhibition would be higher in the anterior cruciate ligament injured limbs than the uninvolved limbs, that the incidence of inhibition in the anterior cruciate ligament deficient limbs would be larger than in our historical sample of healthy young individuals tested in the same manner and that there would be no difference in inhibition by gender.Study design: Prospective, descriptive. Methods: One hundred consecutive patients with acute anterior cruciate ligament rupture (39 women and 61 men) were tested when range of motion was restored and effusion resolved, an average of 6 weeks after injury. A burst superimposition technique was used to assess quadriceps muscle activation and strength in all patients. Dependent t-tests were used to compare side-to-side differences in quadriceps strength. Independent t-tests were used to compare incidence of activation failure by gender and make comparisons to historical data on young, active individuals.Results: The average iqvolved side quadriceps activation was 0.92, and ranged from 0.60 to 1.00. The incidence of incomplete activation in the involved side quadriceps was 33 per cent and uninvolved side quadriceps was 31 per cent after acute anterior cruciate ligament rupture. The incidence of incomplete activation bilaterally was 21 per cent. There was no difference in incidence of quadriceps inhibition by gender.Conclusion: The incidence of voluntary quadriceps inhibition on the involved side was three times that of uninjured, active young subjects, but the magnitude was not large. The incidence of quadriceps inhibition on the uninjured side was similar to the injured side.Clinical relevance: Both the incidence and magnitude of quadriceps inhibition after ACL rupture are lower than have previously been reported. The conventional wisdom, therefore, that quadriceps inhibition is a significant problem in this population is challenged by the results of this study. Differences between this study and others include sufficient practice to ensure a maximal effort contraction and rigorous inclusion criteria. The findings have implications for strength testing as well as rehabilitation. The quadriceps index, an assessment of the injured side quadriceps strength deficit may be affected by the presence of voluntary activation failure in the uninvolved side.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.