Background The biological processes associated with postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) are unknown. Methods We measured soluble markers of inflammation in a SARS-CoV-2 recovery cohort at early (<90 days) and late (>90 days) timepoints. We defined PASC as the presence of 1 or more coronavirus disease 2019 (COVID-19)–attributed symptoms beyond 90 days. We compared fold-changes in marker values between those with and without PASC using mixed-effects models with terms for PASC and early and late recovery time periods. Results During early recovery, those who went on to develop PASC generally had higher levels of cytokine biomarkers including tumor necrosis factor–α (1.14-fold higher mean ratio [95% confidence interval {CI}, 1.01–1.28]; P = .028) and interferon-γ–induced protein 10 (1.28-fold higher mean ratio [95% CI, 1.01–1.62]; P = .038). Among those with PASC, there was a trend toward higher interleukin 6 levels during early recovery (1.29-fold higher mean ratio [95% CI, .98–1.70]; P = .07), which became more pronounced in late recovery (1.44-fold higher mean ratio [95% CI, 1.11–1.86]; P < .001). These differences were more pronounced among those with a greater number of PASC symptoms. Conclusions Persistent immune activation may be associated with ongoing symptoms following COVID-19. Further characterization of these processes might identify therapeutic targets for those experiencing PASC.
The authors found that Long COVID symptoms in a post-acute cohort were associated with serological evidence suggesting recent EBV reactivation and pre-existing HIV infection when adjusted for participant factors, sample timing, comorbid conditions and prior hospitalization, whereas underlying CMV infection was associated with decreased odds of Long COVID.
BACKGROUND There is mounting evidence for the presence of post-acute sequelae of SARS-CoV-2 infection (PASC), but there is limited information on the spectrum, magnitude, duration, and patterns of these sequelae as well as their influence on quality of life. METHODS We assembled a cohort of adults with documented history of SARS-CoV-2 RNA-positivity who were ≥ 2 weeks past onset of COVID-19 symptoms or, if asymptomatic, first positive test. At 4-month intervals, we queried physical and mental health symptoms and quality of life. RESULTS Of the first 179 participants enrolled, 10 were asymptomatic during the acute phase of SARS-CoV-2 infection, 125 symptomatic but not hospitalized, and 44 symptomatic and hospitalized. During the post-acute phase, fatigue, shortness of breath, concentration problems, headaches, trouble sleeping and anosmia/dysgeusia were most common through 8 months of observation. Symptoms were typically at least somewhat bothersome and sometimes exhibited a waxing-and-waning course. Some participants experienced symptoms of depression, anxiety, and post-traumatic stress, as well as difficulties with performance of usual activities. The median visual analogue scale rating of general health was lower at 4 and 8 months compared to pre-COVID-19. Two clusters of symptom domains were identified. CONCLUSION Many participants report bothersome symptoms following onset of COVID-19 with variable patterns of persistence and impact on quality of life. The substantial variability suggests the existence of multiple sub-phenotypes of PASC. A rigorous approach to the prospective measurement of symptoms and functional manifestations sets the stage for the next phase of research focusing on the pathophysiologic causes of the various sub-groups of PASC.
Objective As SARS‐CoV‐2 is known to invade neural cell mitochondria, a plasma system for quantifying central nervous system proteins in living humans was used to investigate neuropathogenic mechanisms of long‐COVID‐19. Methods SARS‐CoV‐2 proteins and mitochondrial proteins (MPs) in enriched plasma neuron‐derived extracellular vesicles (NDEVs) and astrocyte‐derived EVs (ADEVs) were quantified in resolved acute COVID‐19 without post‐acute sequelae of SARS‐CoV‐2 (PASC), PASC without neuropsychiatric manifestations (NP), PASC with NP and healthy controls. Results NDEV and ADEV mean levels of SARS‐CoV‐2 S1 and nucleocapsid (N) proteins were higher in all PASC sub‐groups than controls, but only N levels were higher in PASC with than without NP. Exosome marker CD81‐normalized NDEV mean levels of subunit 6 of MP respiratory chain complex I and subunit 10 of complex III, and neuroprotective MPs Humanin and mitochondrial open‐reading frame of the 12S rRNA‐c (MOTS‐c) all were decreased significantly in PASC with NP but not in PASC without NP relative to controls. NDEV levels of MPs voltage‐dependent anion‐selective channel protein 1 (VDAC1) and N‐methyl‐D‐aspartate receptor 1 (NMDAR1) were decreased in PASC without and with NP, whereas those of calcium channel MPs mitochondrial calcium uniporter (MCU), sodium/calcium exchanger (NCLX) and leucine zipper EF‐hand containing transmembrane 1 protein (LETM1) were decreased only in PASC with NP. ADEV levels of MCU and NCLX only were increased in PASC without and with NP. Interpretation Abnormal NDEV and ADEV levels of SARS‐CoV‐2 N and S1 protein and MPs correlate with NP and may be biomarkers for long‐COVID prognostics and therapeutic trials. ANN NEUROL 2022;91:772–781
BACKGROUND: As the coronavirus disease 2019 (COVID-19) pandemic continues and millions remain vulnerable to infection with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), attention has turned to characterizing post-acute sequelae of SARS-CoV-2 infection (PASC). METHODS: From April 21 to December 31, 2020, we assembled a cohort of consecutive volunteers who a) had documented history of SARS-CoV-2 RNA-positivity; b) were ≥ 2 weeks past onset of COVID-19 symptoms or, if asymptomatic, first test for SARS-CoV-2; and c) were able to travel to our site in San Francisco. Participants learned about the study by being identified on medical center-based registries and being notified or by responding to advertisements. At 4-month intervals, we asked participants about physical symptoms that were new or worse compared to the period prior to COVID-19, mental health symptoms and quality of life. We described 4 time periods: 1) acute illness (0-3 weeks), 2) early recovery (3-10 weeks), 3) late recovery 1 (12-20 weeks), and 4) late recovery 2 (28-36 weeks). Blood and oral specimens were collected at each visit. RESULTS: We have, to date, enrolled 179 adults. During acute SARS-CoV-2 infection, 10 had been asymptomatic, 125 symptomatic but not hospitalized, and 44 symptomatic and hospitalized. In the acute phase, the most common symptoms were fatigue, fever, myalgia, cough and anosmia/dysgeusia. During the post-acute phase, fatigue, shortness of breath, concentration problems, headaches, trouble sleeping and anosmia/dysgeusia were the most commonly reported symptoms, but a variety of others were endorsed by at least some participants. Some experienced symptoms of depression, anxiety, and post-traumatic stress, as well as difficulties with ambulation and performance of usual activities. The median visual analogue scale value rating of general health was lower at 4 and 8 months (80, interquartile range [IQR]: 70-90; and 80, IQR 75-90) compared to prior to COVID-19 (85; IQR 75-90). Biospecimens were collected at nearly 600 participant-visits. CONCLUSION: Among a cohort of participants enrolled in the post-acute phase of SARS-CoV-2 infection, we found many with persistent physical symptoms through 8 months following onset of COVID-19 with an impact on self-rated overall health. The presence of participants with and without symptoms and ample biological specimens will facilitate study of PASC pathogenesis. Similar evaluations in a population-representative sample will be needed to estimate the population-level prevalence of PASC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.