BackgroundDrinking water in multiple water districts in the Mid-Ohio Valley has been contaminated with perfluorooctanoic acid (PFOA), which was released by a nearby DuPont chemical plant. Two highly contaminated water districts began granular activated carbon filtration in 2007.ObjectivesTo determine the rate of decline in serum PFOA, and its corresponding half-life, during the first year after filtration.MethodsUp to six blood samples were collected from each of 200 participants from May 2007 until August 2008. The primary source of drinking water varied over time for some participants; our analyses were grouped according to water source at baseline in May–June 2007.ResultsFor Lubeck Public Service District customers, the average decrease in serum PFOA concentrations between May–June 2007 and May–August 2008 was 32 ng/mL (26%) for those primarily consuming public water at home (n = 130), and 16 ng/mL (28%) for those primarily consuming bottled water at home (n = 17). For Little Hocking Water Association customers, the average decrease in serum PFOA concentrations between November–December 2007 and May–June 2008 was 39 ng/mL (11%) for consumers of public water (n = 39) and 28 ng/mL (20%) for consumers of bottled water (n = 11). The covariate-adjusted average rate of decrease in serum PFOA concentration after water filtration was 26% per year (95% confidence interval, 25–28% per year).ConclusionsThe observed data are consistent with first-order elimination and a median serum PFOA half-life of 2.3 years. Ongoing follow-up will lead to improved half-life estimation.
Perfluorooctanoic acid (PFOA) has been detected in environmental samples in Ohio and West Virginia near the Washington Works Plant in Parkersburg, West Virginia. This paper describes retrospective fate and transport modeling of PFOA concentrations in local air, surface water, groundwater, and six municipal water systems based on estimates of historic emission rates from the facility, physicochemical properties of PFOA, and local geologic and meteorological data beginning in 1951. We linked several environmental fate and transport modeling systems to model PFOA air dispersion, transit through the vadose zone, surface water transport, and groundwater flow and transport. These include AERMOD, PRZM-3, BreZo, MODFLOW, and MT3DMS. Several thousand PFOA measurements in municipal well water have been collected in this region since 1998. Our linked modeling system performs better than expected, predicting water concentrations within a factor of 2.1 of the average observed water concentration for each of the six municipal water districts after adjusting the organic carbon partition coefficient to fit the observed data. After model calibration, the Spearman's rank correlation coefficient for predicted versus observed water concentrations is 0.87. These models may be useful for estimating past and future public well water PFOA concentrations in this region.
Background We assessed the association between perfluorooctanoic acid (PFOA) and pregnancy outcome in an area with elevated exposure to PFOA from drinking water contaminated by chemical plant releases. Methods Serum PFOA was measured and reproductive and residential histories were obtained in 2005 – 2006. We estimated serum PFOA levels at the time of pregnancy for 11,737 pregnancies occurring between 1990 and 2006 based on historical information on PFOA releases, environmental distribution, pharmacokinetic modeling, and residential histories. We assessed the association between PFOA and the odds of miscarriage, stillbirth, preeclampsia, preterm birth, term low birthweight, and birth defects controlling for calendar time, age, parity, education, and smoking. PFOA exposure was evaluated as a continuous measure (with and without log-transformation) and in quintiles, combining the lowest two quintiles (<6.8 ng/mL) as the referent. Results Measures of association between PFOA and miscarriage, preterm birth, term low birthweight, and birth defects were close to the null. Odds of stillbirth were elevated in the 4th quintile only. For preeclampsia, the odds ratio was 1.13 (95% confidence interval = 1.00 – 1.28) for an interquartile shift in log-transformed PFOA, and the odds ratios were 1.1 – 1.2 across the upper three quintiles of exposure. Conclusions In this large, population-based study in a region with markedly elevated PFOA exposure, we found no associations between estimated serum PFOA levels and adverse pregnancy outcomes other than possibly preeclampsia. Conclusions are tempered by inherent limitations in exposure reconstruction and self-reported pregnancy outcome information.
Background: Polychlorinated biphenyls (PCBs) manufactured in Anniston, Alabama, from 1929 to 1971 caused significant environmental contamination. The Anniston population remains one of the most highly exposed in the world. Objectives: Reports of increased diabetes in PCB-exposed populations led us to examine possible associations in Anniston residents. Methods: Volunteers ( n = 774) from a cross-sectional study of randomly selected households and adults who completed the Anniston Community Health Survey also underwent measurements of height, weight, fasting glucose, lipid, and PCB congener levels and verification of medications. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the relationships between PCBs and diabetes, adjusting for diabetes risk factors. Participants with prediabetes were excluded from the logistic regression analyses. Results: Participants were 47% African American, 70% female, with a mean age of 54.8 years. The prevalence of diabetes was 27% in the study population, corresponding to an estimated prevalence of 16% for Anniston overall; the PCB body burden of 35 major congeners ranged from 0.11 to 170.42 ppb, wet weight. The adjusted OR comparing the prevalence of diabetes in the fifth versus first quintile of serum PCB was 2.78 (95% CI: 1.00, 7.73), with similar associations estimated for second through fourth quintiles. In participants < 55 years of age, the adjusted OR for diabetes for the highest versus lowest quintile was 4.78 (95% CI: 1.11, 20.6), whereas in those ≥ 55 years of age, we observed no significant associations with PCBs. Elevated diabetes prevalence was observed with a 1 SD increase in log PCB levels in women (OR = 1.52; 95% CI: 1.01, 2.28); a decreased prevalence was observed in men (OR = 0.68; 95% CI: 0.33, 1.41). Conclusions: We observed significant associations between elevated PCB levels and diabetes mostly due to associations in women and in individuals < 55 years of age.
Human exposure to polycyclic aromatic hydrocarbons (PAHs) can be assessed by biomonitoring of their urinary mono-hydroxylated metabolites (OH-PAHs). Limited information exists on the human pharmacokinetics of OH-PAHs. This study aimed to investigate the excretion half-life of 1-hydroxypyrene (1-PYR), the most used biomarker for PAH exposure, and 9 other OH-PAHs following a dietary exposure in 9 non-smoking volunteers with no occupational exposure to PAHs. Each person avoided food with known high PAH-content during the study period, except for a high PAH-containing lunch (barbecued chicken) on the first day. Individual urine samples (n = 217) were collected from 15 hours before to 60 hours following the dietary exposure. Levels of all OH-PAHs in all subjects increased rapidly by 9-141 fold after the exposure, followed by a decrease consistent with first order kinetics, and returned to background levels 24-48 hours after the exposure. The average time to reach maximal concentration ranged from 3.1 h (1-naphthol) to 5.5 h (1-PYR). Creatinine-adjusted urine concentrations for each metabolite were analyzed using a non-linear mixed effects model including a term to estimate background exposure. The background-adjusted half-life estimate was 3.9 h for 1-PYR and ranged 2.5-6.1 h for the other 9 OH-PAHs, which in general, were shorter than those previously reported. The maximum concentrations after the barbecued chicken consumption were comparable to the levels found in reported occupational settings with known high PAH exposures. It is essential to consider the relatively short half-life, the timing of samples relative to exposures, and the effect of diet when conducting PAH exposure biomonitoring studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.