Doxorubicin complexation with the transition metal manganese (Mn(2+)) has been characterized, differentiating between the formation of a doxorubicin-metal complex and doxorubicin fibrous-bundle aggregates typically generated following ion gradient-based loading procedures that rely on liposome encapsulated citrate or sulfate salts. The physical and chemical characteristics of the encapsulated drug were assessed using cryo-electron microscopy, circular dichroism (CD) and absorbance spectrophotometric analysis. In addition, in vitro and in vivo drug loading and release characteristics of the liposomal formulations were investigated. Finally, the internal pH after drug loading was measured with the aim of linking formation of the Mn(2+) complex to the presence or absence of a transmembrane pH gradient. Doxorubicin was encapsulated into either 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol (Chol) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/Chol liposomes, where the entrapped salts were citrate, MnSO(4) or MnCl(2). In response to a pH gradient or a Mn(2+) ion gradient, doxorubicin accumulated inside to achieve a drug-to-lipid ratio of approximately 0.2:1 (wt/wt). Absorbance and CD spectra of doxorubicin in the presence of Mn(2+) suggested that there are two distinct structures captured within the liposomes. In the absence of added ionophore A23187, drug loading is initiated on the basis of an established pH gradient; however, efficient drug uptake is not dependent on maintenance of the pH gradient. Drug release from DMPC/Chol is comparable regardless of whether doxorubicin is entrapped as a citrate-based aggregate or a Mn(2+) complex. However, in vivo drug release from DSPC/Chol liposomes indicate less than 5% or greater than 50% drug loss over a 24-h time course when the drug was encapsulated as an aggregate or a Mn(2+) complex, respectively. These studies define a method for entrapping drugs possessing coordination sites capable of complexing transition metals and suggest that drug release is dependent on lipid composition, internal pH, as well as the nature of the crystalline precipitate, which forms following encapsulation.
The utilization of D- and L-amino acids with acidic, basic or polar side chains was demonstrated by HPLC. Two species of the anaerobe Fusobacterium utilized D-lysine and the L isomers of glutamate, glutamine, histidine, lysine and serine. Only F. varium used L-arginine, D-glutamate and D-serine as substrates, whereas F. nucleatum specifically utilized D-histidine and D-glutamine. D-Glutamate accumulated in F. nucleatum cultures supplemented with D-glutamine, and ornithine was detected when either DL- or L-arginine was included in F. varium cultures. Based on literature precedents, D-glutamate and D-histidine are isomerized to their L isomers prior to degradation, but separate catabolic pathways are possible for each enantiomer of lysine and serine.
We have previously reported the identification of the cyclic enterobacterial common antigen (ECA(CYC)) polysaccharide in E. coli strains commonly used for heterologous protein expression (PJA Erbel et al., J. Bacteriol. 185 (2003): 1995). Following this initial report, interactions among several NMR groups established that characteristic N -acetyl signals of ECA(CYC) have been observed in (15)N-(1)H HSQC spectra of samples of various bacterially-expressed proteins suggesting that this water-soluble carbohydrate is a common contaminant. We provide NMR spectroscopic tools to recognize ECA(CYC) in protein samples, as well as several methods to remove this contaminant. Early recognition of ECA-based NMR signals will prevent time-consuming analyses of this copurifying carbohydrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.