Fifty-three fertilized Xenopus laevis embryos at early tail bud stage were launched into orbit aboard a Biocosmos satellite and remained in microgravity for 11.5 days. During this period, the embryos hatched and continued to develop as free-living larvae. Forty-eight individuals survived the mission. Upon recovery these tadpoles had smaller heads/bodies and proportionately longer tails than ground controls. Almost all the flight animals had caudal lordosis and consequently swam in backward somersaults. Compared to ground-based controls, their notochords were significantly larger in cross-sectional area and were deformed. Caudal muscle fibers were less dense and involuted in a fashion indicative of degeneration. In contrast, cranial muscles associated with buccal pumping did not differ between the flight and control animals. Upon landing, the flight larvae were found to be negatively buoyant and lay on the bottom when they were not swimming. They had significantly smaller lungs than controls, suggesting that they had failed to inflate their lungs in microgravity. Additionally, the branchial baskets, gill filters and thymuses all showed signs of retarded development or degeneration. The caudal deformity that we observed in the flight X. laevis has been independently observed in three other space flight experiments where embryos were launched then hatched in space. In contrast, Xenopus larvae from another orbital experiment that were raised from fertilization through hatching in space did not exhibit any caudal abnormalities. These divergent results suggest that either features of the launch itself (i.e., high acceleration and vibration) or an abrupt decrease in gravity during the tail bud stage detrimentally affects musculoskeletal development in anurans.
Cardiovascular regulatory neurons of the ventral medulla and pons are thought to have an important role in the mediation of trigeminal nociception-induced reflex cardiovascular responses. However, the neural pathways that link the spinal trigeminal nucleus with ventral medullary and pontine autonomic cell groups are poorly understood. The present study utilized injections of the highly sensitive anterograde tracer substance biotinylated dextran combined with immunocytochemistry for tyrosine hydroxylase, the synthesizing enzyme for catecholamines, to investigate the distribution and morphology of projections from the spinal trigeminal subnucleus caudalis to ventral medullary and pontine catecholaminergic cell groups. Injection of biotylinated dextran into the dorsal subnucleus caudalis produced dense anterograde labeling in dorsal regions of the medullary and pontine reticular formation including the dorsal medullary reticular field, the parvicellular reticular field, and the parvicellular reticular field pars anterior. In the ventral medullary and pontine reticular formation, light anterograde labeling tended to be distributed in close proximity to the distal dendrites of catecholaminergic neurons located in the C1, A1, and A5 regions. Injections of anterograde tracer into the dorsal medullary reticular field produced dense anterograde labeling in the ventral medullary and pontine reticular formation. Numerous terminal-like varicosities were observed in close proximity to catecholaminergic neurons located in the C1, A1, and A5 regions. These data suggest that trigeminal pain-induced reflex cardiovascular responses involve indirect projections that terminate in the dorsal medullary and pontine reticular formation before reaching ventral medullary and pontine catecholaminergic cell groups known to be involved in cardiovascular regulation.
Shortly after hatching, Xenopus laevis tadpoles fill their lungs with air. We examined the role played by early lung use in these organisms, since they are able to respire with both their lungs and their gills. We investigated the effect on X. laevis development when the larvae were prevented from inflating their lungs, and whether early lung use influenced the size of the lungs or the tadpole's ability to metamorphose. Tadpoles that were denied access to air had lungs one-half the size of those of controls. This difference in lung size was too large to be explained merely by a stretching of the lung due to inflation. The longer tadpoles were denied access to air, the longer they took to metamorphose, and their probability of completing metamorphosis diminished. One tadpole raise throughout its larval life without access to air successfully metamorphosed but had abnormal, solidified lungs and an enlarged heart. Collectively, these experiments demonstrate that early lung use in tadpoles is important in determining both ultimate lung size and the probability of successfully metamorphosing. Lung use during early larval development in X. laevis is not absolutely necessary for survival through metamorphosis, but its absence severely handicaps growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.