Many network scientists have investigated the problem of mitigating or removing false information propagated in social networks. False information falls into two broad categories: disinformation and misinformation. Disinformation represents false information that is knowingly shared and distributed with malicious intent. Misinformation in contrast is false information shared unwittingly, without any malicious intent. Many existing methods to mitigate or remove false information in networks concentrate on methods to find a set of seeding nodes (or agents) based on their network characteristics (e.g., centrality features) to treat. The aim of these methods is to disseminate correct information in the most efficient way. However, little work has focused on the role of uncertainty as a factor in the formulation of agents' opinions. Uncertainty-aware agents can form different opinions and eventual beliefs about true or false information resulting in different patterns of information diffusion in networks. In this work, we leverage an opinion model, called Subjective Logic (SL), which explicitly deals with a level of uncertainty in an opinion where the opinion is defined as a combination of belief, disbelief, and uncertainty, and the level of uncertainty is easily interpreted as a person's confidence in the given belief or disbelief. However, SL considers the dimension of uncertainty only derived from a lack of information (i.e., ignorance), not from other causes, such as conflicting evidence. In the era of Big Data, where we are flooded with information, conflicting information can increase uncertainty (or ambiguity) and have a greater effect on opinions than a lack of information (or ignorance). To enhance the capability of SL to deal with ambiguity as well as ignorance, we propose an SL-based opinion model that includes a level of uncertainty derived from both causes. By developing a variant of the Susceptible-Infected-Recovered epidemic model that can change an agent's status based on the state of their opinions, we capture the evolution of agents' opinions over time. We present an analysis and discussion of critical changes in network outcomes under varying values of key design parameters, including the frequency ratio of true or false information propagation, centrality metrics used for selecting seeding false informers and true informers, an opinion decay factor, the degree of agents' prior belief, and the percentage of true informers. We validated our proposed opinion model using both the synthetic network environments and realistic network environments considering a real network topology,
Abstract-We consider a discrete time queueing system where a controller makes a 2-stage decision every slot. The decision at the first stage reveals a hidden source of randomness with a controldependent (but unknown) probability distribution. The decision at the second stage generates an attribute vector that depends on this revealed randomness. The goal is to stabilize all queues and optimize a utility function of time average attributes, subject to an additional set of time average constraints. This setting fits a wide class of stochastic optimization problems, including multiuser wireless scheduling with dynamic channel measurement decisions, and wireless multi-hop routing with multi-receiver diversity and opportunistic routing decisions. We develop a simple max-weight algorithm that learns efficient behavior by averaging functionals of previous outcomes.
In this paper we present a framework and a set of algorithms for determining faults in networks when large scale outages occur. The design principles of our algorithm, netCSI, are motivated by the fact that failures are geographically clustered in such cases. We address the challenge of determining faults with incomplete symptom information due to a limited number of reporting nodes in the network. netCSI consists of two parts: hypotheses generation algorithm, and ranking algorithm. When constructing the hypotheses list of potential causes, we make novel use of the positive and negative symptoms to improve the precision of the results. The ranking algorithm is based on conditional failure probability models that account for the geographic correlation of the network objects in clustered failures. We evaluate the performance of netCSI for networks with both random and realistic topologies. We compare the performance of netCSI with an existing fault diagnosis algorithm, MAX-COVERAGE, and achieve an average gain of 128% in accuracy for realistic topologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.