Figure 1: Deformation using Moving Least Squares. Original image with control points shown in blue (a). Moving Least Squares deformations using affine transformations (b), similarity transformations (c) and rigid transformations (d).
This paper describes a new method for contouring a signed grid whose edges are tagged by Hermite data (i.e; exact intersection points and normals). This method avoids the need to explicitly identify and process "features" as required in previous Hermite contouring methods. Using a new, numerically stable representation for quadratic error functions, we develop an octree-based method for simplifying contours produced by this method. We next extend our contouring method to these simpli£ed octrees. This new method imposes no constraints on the octree (such as being a restricted octree) and requires no "crack patching". We conclude with a simple tion.
a) (b) (c) (d) Figure 1: Original horse model with enclosing triangle control mesh shown in black (a). Several deformations generated using our 3D mean value coordinates applied to a modified control mesh (b,c,d). AbstractConstructing a function that interpolates a set of values defined at vertices of a mesh is a fundamental operation in computer graphics.Such an interpolant has many uses in applications such as shading, parameterization and deformation. For closed polygons, mean value coordinates have been proven to be an excellent method for constructing such an interpolant. In this paper, we generalize mean value coordinates from closed 2D polygons to closed triangular meshes. Given such a mesh P, we show that these coordinates are continuous everywhere and smooth on the interior of P. The coordinates are linear on the triangles of P and can reproduce linear functions on the interior of P. To illustrate their usefulness, we conclude by considering several interesting applications including constructing volumetric textures and surface deformation.
Constructing a function that interpolates a set of values defined at vertices of a mesh is a fundamental operation in computer graphics. Such an interpolant has many uses in applications such as shading, parameterization and deformation. For closed polygons, mean value coordinates have been proven to be an excellent method for constructing such an interpolant. In this paper, we generalize mean value coordinates from closed 2D polygons to closed triangular meshes. Given such a mesh P , we show that these coordinates are continuous everywhere and smooth on the interior of P . The coordinates are linear on the triangles of P and can reproduce linear functions on the interior of P . To illustrate their usefulness, we conclude by considering several interesting applications including constructing volumetric textures and surface deformation.
], prescribed mean curvature flow [Hildebrandt and Polthier 2004], mean filtering [Yagou et al. 2002], bilateral normal filtering [Zheng et al. 2011], our method. The wireframe shows folded triangles as red edges. AbstractWe present an algorithm for denoising triangulated models based on L0 minimization. Our method maximizes the flat regions of the model and gradually removes noise while preserving sharp features. As part of this process, we build a discrete differential operator for arbitrary triangle meshes that is robust with respect to degenerate triangulations. We compare our method versus other anisotropic denoising algorithms and demonstrate that our method is more robust and produces good results even in the presence of high noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.