Atmospheric aerosol vertical distributions were measured above Svalbard, Norway, in April 2011 during the Cooperative Investigation of Climate-Cryosphere Interactions campaign (CICCI). Measurements were made of the particle number concentration and the aerosol light absorption coefficient at three wavelengths. A filter sample was collected on each flight at the altitude of maximum particle number concentration. The filters were analyzed for major anions and cations. The aerosol payload was flown in a NOAA/PMEL MANTA Unmanned Aerial System (UAS). A total of 18 flights were flown during the campaign totaling 38 flight hours. The data show frequent aerosol layers aloft with high particle number concentration (1000 cm−3) and enhanced aerosol light absorption (1 Mm−1). Air mass histories of these aerosol layers were assessed using FLEXPART particle dispersion modeling. The data contribute to an assessment of sources of BC to the Arctic and potential climate impacts
A tsunameter (soo-NAHM-etter) network has been established in the Pacific by the National Oceanic and Atmospheric Administration. Named by analogy with seismometers, the NOAA tsunameters provide early detection and real-time measurements of deep-ocean tsunamis as they propagate toward coastal communities, enabling the rapid assessment of their destructive potential. Development and maintenance of this network supports a Statedriven, high-priority goal of the U.S. National Tsunami Hazard Mitigation Program to improve the speed and reliability of tsunami warnings. The network is now operational, with excellent reliability and data quality, and has proven its worth to warning center decisionmakers during potentially tsunamigenic earthquake events; the data have helped avoid issuance of a tsunami warning or have led to cancellation of a tsunami warning, thus averting potentially costly and hazardous evacuations. Optimizing the operational value of the network requires implementation of real-time tsunami forecasting capabilities that integrate tsunameter data with numerical modeling technology. Expansion to a global tsunameter network is needed to accelerate advances in tsunami research and hazard mitigation, and will require a cooperative and coordinated international effort.
Abstract. A tsunameter (soo-NAHM-etter) network has been established in the Pacific by the National Oceanic and Atmospheric Administration. Named by analogy with seismometers, the NOAA tsunameters provide early detection and real-time measurements of deep-ocean tsunamis as they propagate toward coastal communities, enabling the rapid assessment of their destructive potential. Development and maintenance of this network supports a Statedriven, high-priority goal of the U.S. National Tsunami Hazard Mitigation Program to improve the speed and reliability of tsunami warnings. The network is now operational, with excellent reliability and data quality, and has proven its worth to warning center decisionmakers during potentially tsunamigenic earthquake events; the data have helped avoid issuance of a tsunami warning or have led to cancellation of a tsunami warning, thus averting potentially costly and hazardous evacuations. Optimizing the operational value of the network requires implementation of real-time tsunami forecasting capabilities that integrate tsunameter data with numerical modeling technology. Expansion to a global tsunameter network is needed to accelerate advances in tsunami research and hazard mitigation, and will require a cooperative and coordinated international effort.
Abstract-Fast, accurate tsunami forecasts are an essential component of an effective tsunami warning system. Decision-makers at Tsunami Warning Centers must assess the hazard to coastal communities by rapidly collecting and interpreting earthquake and sea-level data. The stakes are high: A missed warning could devastate entire regions and needless evacuations are expensive, dangerous and erode confidence in the warning system. Tsunami forecasting technology under development at NOAA/PMEL is based on the welltested approach used in many other forecast systems-i.e., the integration of real-time measurement and modeling technologies. Real-time monitoring and measurement of sea-level data in the deep ocean is presently made by a seven-station network of DART (Deep-ocean Assessment and Reporting of Tsunamis) systems. DART II is a new generation system that will have additional features and capabilities to aid the forecasting ability of Tsunami Warning Centers. As a result of the devastating impact of the 26 December 2004 Sumatra tsunami and the proven value of the DART array, the number of network stations will be increased to 39 by mid-2007.
We present a record of ambient sound obtained using a unique deep-ocean instrument package and mooring that was successfully deployed in 2015 at Challenger Deep in the Mariana Trench. The 45 m long mooring contained a hydrophone and an RBR™ pressure-temperature sensor. The hydrophone recorded continuously for 24 days at a 32 kHz sample rate. The pressure logger recorded a maximum pressure of 11,161.4 decibars, corresponding to a depth of 10,829.7 m, where actual anchor depth was 10,854.7 m. Observed sound sources included earthquake acoustic signals (T phases), baleen and odontocete cetacean vocalizations, ship propeller sounds, airguns, active sonar, and the passing of a Category 4 typhoon. Overall, Challenger Deep sound levels in the ship traffic band (20-100 Hz) can be as high as noise levels caused by moderate shipping, which is likely due to persistent commercial and military ship traffic in the region. Challenger Deep sound levels due to sea surface wind/waves (500 Hz to 1 kHz band) are as high as sea state 2, but can also be very low, equivalent to sea state 0. To our knowledge, this is the first long-term (multiday to week) broadband sound record, and only the fifth in situ measurement of depth, ever made at Challenger Deep. Our study indicates that Challenger Deep, the ultimate hadal (>6,000 m) environment, can be relatively quiet but is not as acoustically isolated as previously thought, and weatherrelated surface processes can influence the soundscape in the deepest parts of the ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.