Areas with disproportionately high pollutant losses (i.e., critical source areas [CSAs]) have been widely recognized as priority areas for the control of nonpoint-source pollution. The identification and evaluation of CSAs at the watershed scale allows state and federal programs to implement soil and water conservation measures where they are needed most. Despite many potential advantages, many state and federal conservation programs do not actively target CSAs. There is a lack of research identifying the total CSA pollutant contribution at the watershed scale, and there is no quantitative assessment of program effectiveness if CSAs are actively targeted. The purpose of this research was to identify and quantify sediment and total phosphorus loads originating from CSAs at the watershed scale using the Soil and Water Assessment Tool. This research is a synthesis of CSA targeting studies performed in six Oklahoma priority watersheds from 2001 to 2007 to aid the Oklahoma Conservation Commission in the prioritized placement of subsidized conservation measures. Within these six watersheds, 5% of the land area yielded 50% of sediment and 34% of the phosphorus load. In watersheds dominated by agriculture, the worst 5% of agricultural land contributed, on average, 22% of the total agricultural pollutant load. Pollutant loads from these agricultural CSAs were more than four times greater than the average load from agricultural areas within the watershed. Conservation practices implemented in these areas can be more effective because they have the opportunity to treat more pollutant. The evaluation of CSAs and prioritized implementation of conservation measures at the watershed scale has the potential to significantly improve the effectiveness of state and federally sponsored water quality programs.
Problem statement:Wister Lake is located in the San Bois Mountains in southeastern Oklahoma, USA. The reservoir is primarily used as a water supply and flood storage to over 40,000 residents in the area. Due to high levels of phosphorus and sediment, Wister Lake is listed as a high priority basin for the State of Oklahoma. To help address these water quality problems, the Oklahoma Conservation Commission provided cost share funds for landowners in the basin to implement conservation practices. Approach: The objective of this study was to identify or target agricultural land that contributed disproportional pollutant losses, i.e. critical source areas. Results: Implementing conservation practice in these critical source areas allowed optimal placement conservation practices. The Soil and Water Assessment Tool (SWAT) model was used to identify critical source areas of phosphorus and sediment in the Wister Lake basin. SWAT predicted 57,000 metric tons a year of sediment and 84,000 kilograms a year of total phosphorus from upland areas in the basin. Eighty-five percent of the pollutant load originated from just 10% of the basin. Conclusion/Recommendations: This allowed the OCC to identify and contact specific agricultural producers to recruit into their water quality program, which optimized the use of limited cost share funds.
Agricultural runoff transports sediments and nutrients that deteriorate water quality erratically, posing a challenge to ground-based monitoring. Satellites provide data at spatial-temporal scales that can be used for water quality monitoring. PlanetScope nanosatellites have spatial (3 m) and temporal (daily) resolutions that may help improve water quality monitoring compared to coarser-resolution satellites. This work compared PlanetScope to Landsat-8 and Sentinel-2 in their ability to detect key water quality parameters. Spectral bands of each satellite were regressed against chlorophyll a, turbidity, and Secchi depth data from 13 reservoirs in Oklahoma over three years (2017–2020). We developed significant regression models for each satellite. Landsat-8 and Sentinel-2 explained more variation in chlorophyll a than PlanetScope, likely because they have more spectral bands. PlanetScope and Sentinel-2 explained relatively similar amounts of variations in turbidity and Secchi Disk data, while Landsat-8 explained less variation in these parameters. Since PlanetScope is a commercial satellite, its application may be limited to cases where the application of coarser-resolution satellites is not feasible. We identified scenarios where PS may be more beneficial than Landsat-8 and Sentinel-2. These include measuring water quality parameters that vary daily, in small ponds and narrow coves of reservoirs, and at reservoir edges.
Groundwater depletion is a serious issue in the southern and central parts of the High Plains Aquifer (HPA), USA. A considerable imbalance exists between the recharge process and groundwater extractions in these areas, which threatens the long-term sustainability of the aquifer. Irrigated agriculture has a major share in the economy, and it requires high pumping rates in regions vulnerable to large groundwater level declines. A literature review has been conducted to understand the state of affairs of irrigated agriculture in the HPA, along with the dynamics of groundwater decline and recharge using statistical and remote-sensing based datasets. Also, three irrigation management and technology-based approaches have been discussed from the perspective of sustainability. The southern and central parts of the HPA consist mostly of non-renewable groundwater formations, and the natural water storage is prone to exhaustion. Moreover, the aforementioned regions have comparatively higher crop water requirement due to the climate, and irrigating crops in these regions puts stringent pressure on the aquifer. The upper threshold of irrigation application efficiency (IAE) is high in the HPA, and could reach up to 95%; however, considerable room for improvement in irrigation water management exists. In general, the practices of irrigation scheduling used in the HPA are conventional and a small proportion of growers use modern methods to decide about irrigation timing. Among numerous ways to promote sustainable groundwater use in the HPA, deficit irrigation, use of soil moisture sensors, and subsurface drip irrigation can be considered as potential ways to attain higher lifespans in susceptible parts of the aquifer.
New photobathymetry and water quality software is described here that utilizes subpixel analysis software (Subpixel Classifier) with an autonomous image calibration procedure and analytic retrieval algorithm to simultaneously retrieve and report bottom depth and the concentrations of suspended chlorophyll, suspended sediments, and colored dissolved organic carbon on a per-pixel basis from four-band multispectral image data. From the derived composition, the QSC2 (Quantitative Shoreline Characterization, Version 2.0) software also computes and reports water column visibility parameters (vertical and horizontal subsurface sighting ranges and turbidity, each at four wavelength band passes, plus Secchi depth as a scalar) as well as depth and turbidity confidence. QSC2 compensates for the effects of the atmosphere, sun and sky reflections from the water surface, subpixel contributions from exposed land, and variations in the bottom material properties. All information is derived automatically from the pixel data alone. The performance of the QSC2 software was demonstrated using a four-band Ikonos image of Plymouth, Massachusetts. Accuracies of the image-derived compositions, water clarity, and depths were assessed using field and laboratory measurements for eight representative lakes in the scene. The means of the differences of the field-measured and image-derived suspended chlorophyll and colored dissolved organic carbon concentrations for the eight lakes were 1.82 g/l and 4.34 mgC/l, respectively. The image-derived concentrations of suspended sediments were all below the threshold of detection for the field samples (5 mg/l), in agreement with the field data. The mean of the differences between field-measured and image-derived Secchi depths was 0.76 m. The mean depth difference was 0.57 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.