We have previously shown that increased nitric oxide (NO) production in sepsis impairs arteriolar-conducted vasoconstriction cGMP independently and that the gap junction protein connexin (Cx) 37 is required for this conducted response. In the present study, we hypothesized that NO impairs interendothelial electrical coupling in sepsis by targeting Cx37. We examined the effect of exogenous NO on coupling in monolayers of cultured microvascular endothelial cells derived from the hindlimb skeletal muscle of wild-type (WT), Cx37 null, Cx40 null, and Cx43(G60S) (nonfunctional mutant) mice. To assess coupling, we measured the spread of electrical current injected in the monolayer and calculated the monolayer intercellular resistance (inverse measure of coupling). The NO donor 2,2'-(hydroxynitrosohydrazino)bis-ethanamine (DETA) rapidly and reversibly reduced coupling in cells from WT mice, cGMP independently. NO scavenger HbO(2) did not affect baseline coupling, but it eliminated DETA-induced reduction in coupling. Reduced coupling in response to DETA was also seen in cells from Cx40 null and Cx43(G60S) mice, but not in cells from Cx37 null mice. DETA did not alter the expression of Cx37, Cx40, and Cx43 in WT cells analyzed by immunoblotting and immunofluorescence. Furthermore, neither the peroxynitrite scavenger 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron (III), superoxide scavenger Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, nor preloading of WT cells with the antioxidant ascorbate affected this reduction. We conclude that NO-induced reduction of electrical coupling between microvascular endothelial cells depends on Cx37 and propose that NO in sepsis impairs arteriolar-conducted vasoconstriction by targeting Cx37 within the arteriolar wall.
Background: Despite many animal studies and clinical trials, mortality in sepsis remains high. This may be due to the fact that most experimental studies of sepsis employ young animals, whereas the majority of septic patients are elderly (60 − 70 years). The objective of the present study was to examine the sepsis-induced inflammatory and pro-coagulant responses in aged mice. Since running exercise protects against a variety of diseases, we also examined the effect of voluntary running on septic responses in aged mice. Methods: Male C57BL/6 mice were housed in our institute from 2-3 to 22 months (an age mimicking that of the elderly). Mice were prevented from becoming obese by food restriction (given 70-90% of ad libitum consumption amount). Between 20 and 22 months, a subgroup of mice ran voluntarily on wheels, alternating 1-3 days of running with 1-2 days of rest. At 22 months, mice were intraperitoneally injected with sterile saline (control) or 3.75 g/kg fecal slurry (septic). At 7 h post injection, we examined (1) neutrophil influx in the lung and liver by measuring myeloperoxidase and/ or neutrophil elastase in the tissue homogenates by spectrophotometry, (2) interleukin 6 (IL6) and KC in the lung lavage by ELISA, (3) pulmonary surfactant function by measuring percentage of large aggregates, (4) capillary plugging (pro-coagulant response) in skeletal muscle by intravital microscopy, (5) endothelial nitric oxide synthase (eNOS) protein in skeletal muscle (eNOS-derived NO is putative inhibitor of capillary plugging) by immunoblotting, and (6) systemic blood platelet counts by hemocytometry. Results: Sepsis caused high levels of pulmonary myeloperoxidase, elastase, IL6, KC, liver myeloperoxidase, and capillary plugging. Sepsis also caused low levels of surfactant function and platelet counts. Running exercise increased eNOS protein and attenuated the septic responses. Conclusions: Voluntary running protects against exacerbated sepsis-induced inflammatory and pro-coagulant responses in aged mice. Protection against pro-coagulant responses may involve eNOS upregulation. The present discovery in aged mice calls for clinical investigation into potential beneficial effects of exercise on septic outcomes in the elderly.
The ability of ascorbate to reduce platelet aggregation and P-selectin expression could be an important mechanism by which ascorbate inhibits capillary plugging in sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.