A unique LVS (layout-versus-schematic) methodology has been developed for the verification of a four-core microprocessor with multiple power domains using a triple-well 90-nm CMOS technology. The chip is migrated from its previous generation that is for a twin-well process. Due to the design reuse, VDD and GND are designed as global nets but they are not globally connected across the entire chip. The standard LVS flow is unable to handle the additional design complexity and there seems to be no published literature tackling the problem. This paper presents a two-phase LVS methodology: a standard LVS phase where power and ground nets are defined as global nets and a multi-power-domain LVS phase where power and ground nets are treated as local nets. The first phase involves verifying LVS at the block level as well as the full-chip level. The second phase aims at verifying the integrity of the multi-power-domain power grid that is not covered in the first phase LVS. The proposed LVS methodology was successfully verified by real silicon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.