The effect of varying total solids (TS) and volatile solids (VS) concentrations and organic loading on the performance of a temperature phased anaerobic digestion (TPAD) system treating a mixture of primary and waste activated sludges was evaluated. An optimum volatile solids destruction of 61.5% occurred at a feed concentration of 4.9% (corresponding to 3.8% VS concentration) in the system operated at a total detention time of 20 days. At a total solids concentration of 7.9% (5.8% VS concentration), the volatile solids destruction efficiency dropped to 52.5%. At all conditions (4.4 to 7.9% TS) the TPAD system was able to meet the requirements for Class A biosolids, including those for fecal coliform and volatile solids destruction. The effluent fecal coliform concentration never exceeded 628 most probable number (MPN)/g TS. Thermophilic biomass activity tests were run on both the thermophilic (55°C) and the mesophilic (35°C ) sludge. Biomass from the thermophilic reactor showed much greater activity at 55°C than at 35°C. However, significant activity was still present when the test was run at 35°C. Activity tests completed on samples from the mesophilic reactor also had high activities at 55°C, sometimes equal to the activity of the thermophilic biomass. These results suggest that the bacterial consortia in the TPAD system may be temperature-tolerant and not necessarily two distinct communities with two distinct temperature regimes as had been previously assumed. Water Environ. Res., 74, 142 (2002).
The Town of Avon Colorado and the Eagle River Water and Sanitation District have partnered to design, construct, and operate a mechanical “Community Heat Recovery System” which extracts low-grade waste heat from treated wastewater and delivers this heat for beneficial use. Immediate uses include heating of the community swimming pool, melting snow and ice on high pedestrian areas in an urban redevelopment zone in order to improve pedestrian safety, and space heating for project buildings and an adjacent water plant pump station building. Points of use are located within one mile of the treatment plant. The initial system is sized to extract heat from 170 m3/hr (1.08 mgd) of wastewater plant effluent with a 298 kW (400 hp) heat pump. The heat pump will deliver 1,026 kW (3,500,000 BTU/hr) energy to the heat recovery system. A supplemental natural gas boiler provided to meet peak demands will provide an additional 1,026 kW (3,500,000 BTU/hr) energy. The system is expandable allowing the installation of a second heat pump in the future and roof-mounted solar thermal panels. Power for the waste heat recovery system is provided by wind-generated electricity purchased from the local electric utility. The use of wind power with an electric-powered heat pump enables the agencies to fulfill energy needs while also reducing the carbon footprint. The system will achieve a reduction in the temperature of the treated wastewater, which is currently discharged to the Eagle River during low river flow, fish-sensitive periods. The agencies expect to save tax payers and rate payers money as a result of this project as compared to other alternatives or the status quo because it results in a more sustainable long-term operation. At 2008 utility commodities pricing, delivery of heat generated from this system was estimated to cost about one-third less than that from a conventional natural gas boiler system. This facility is the first of its kind in the U.S. and received a “New Energy Community” grant from the State of Colorado. This project shows how local agencies can work cooperatively for mutual benefit to provide infrastructure which accommodates growth and urban renewal and simultaneously demonstrate strong environmental leadership. The potential application of this technology is broad and global. The installed system is expected to cost about $5,000,000; construction will be completed in 2010.
The City of Lethbridge, Canada currently co-digests corn squeezing residuals with wastewater solids in their anaerobic digester system. All of the corn squeezing waste is collected and fed to the digesters over a three month period. The addition of the corn squeezing waste increases the amount of biogas produced by 16,000 m 3 (5.6 million ft 3 ) per year and generates an additional 32,000 kW*hr of electricity in their cogeneration system.In order to maximize the capacity of the existing anaerobic digesters and cogeneration system,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.