Chemical vapor deposition of graphene on Cu often employs polycrystalline Cu substrates with diverse facets, grain boundaries (GBs), annealing twins, and rough sites. Using scanning electron microscopy (SEM), electron-backscatter diffraction (EBSD), and Raman spectroscopy on graphene and Cu, we find that Cu substrate crystallography affects graphene growth more than facet roughness. We determine that (111) containing facets produce pristine monolayer graphene with higher growth rate than (100) containing facets, especially Cu(100). The number of graphene defects and nucleation sites appears Cu facet invariant at growth temperatures above 900 °C. Engineering Cu to have (111) surfaces will cause monolayer, uniform graphene growth.
Direct, tunable coupling between individually assembled graphene layers is a next step toward designer two-dimensional (2D) crystal systems, with relevance for fundamental studies and technological applications. Here we describe the fabrication and characterization of large-area (>cm(2)), coupled bilayer graphene on SiO(2)/Si substrates. Stacking two graphene films leads to direct electronic interactions between layers, where the resulting film properties are determined by the local twist angle. Polycrystalline bilayer films have a "stained-glass window" appearance explained by the emergence of a narrow absorption band in the visible spectrum that depends on twist angle. Direct measurement of layer orientation via electron diffraction, together with Raman and optical spectroscopy, confirms the persistence of clean interfaces over large areas. Finally, we demonstrate that interlayer coupling can be reversibly turned off through chemical modification, enabling optical-based chemical detection schemes. Together, these results suggest that 2D crystals can be individually assembled to form electronically coupled systems suitable for large-scale applications.
We have performed scanning tunneling microscopy and spectroscopy (STM/STS) measurements as well as ab initio calculations for graphene monolayers on clean and hydrogen(H)-passivated silicon (100) (Si(100)/H) surfaces. In order to experimentally study the same graphene piece on both substrates, we develop a method to depassivate hydrogen from under graphene monolayers on the Si(100)/H surface. Our work represents the first demonstration of successful and reproducible depassivation of hydrogen from beneath monolayer graphene flakes on Si(100)/H by electron-stimulated desorption. Ab initio simulations combined with STS taken before and after hydrogen desorption demonstrate that graphene interacts differently with the clean and H-passivated Si(100) surfaces. The Si(100)/H surface does not perturb the electronic properties of graphene, whereas the interaction between the clean Si(100) surface and graphene changes the electronic states of graphene significantly. This effect results from the covalent bonding between C and surface Si atoms, modifying the π-orbital network of the graphene layer. The local density of states shows that the bonded C and Si surface states are highly disturbed near the Fermi energy.
We analyze the optical, chemical, and electrical properties of chemical vapor deposition (CVD) grown hexagonal boron nitride (h-BN) using the precursor ammonia-borane (H3N-BH3) as a function of Ar/H2 background pressure (PTOT). Films grown at PTOT ≤ 2.0 Torr are uniform in thickness, highly crystalline, and consist solely of h-BN. At larger PTOT, with constant precursor flow, the growth rate increases, but the resulting h-BN is more amorphous, disordered, and sp 3 bonded. We attribute these changes in h-BN grown at high pressure to incomplete thermolysis of the H3N-BH3 precursor from a passivated Cu catalyst. A similar increase in h-BN growth rate and amorphization is observed even at low PTOT if the H3N-BH3 partial pressure is initially greater than the background pressure PTOT at the beginning of growth. h-BN growth using the H3N-BH3 precursor reproducibly can give large-area, crystalline h-BN thin films, provided that the total pressure is under 2.0 Torr and the precursor flux is well-controlled.* Correspondence should be addressed to lyding@illinois.edu, jkoepkeuiuc@gmail.com, and joshua.wood@northwestern.edu. Films of h-BN have been used as insulating spacers, 1 encapsulants, 2 substrates for electronic devices, 3, 4 corrosion and oxidation-resistant coatings, 5, 6 and surfaces for growth of other 2D nanomaterials such as graphene 7 and WS2. 8 Most of these studies employed small-area (~100 µm 2 ) h-BN pieces exfoliated from sintered h-BN crystals, 9 limiting technological use of h-BN films. Additionally, unlike graphene, h-BN is difficult to prepare in monolayer form by exfoliation. The electronegativity difference between B and N and the reduced resonance stabilization relative to graphene results in electrostatic attractions between layers and in-plane. Consequently, it is more challenging to control h-BN grain size and layer number. Furthermore, partially ionic B-N bonds can form between neighboring BN layers, serving to "spot weld" such layers together. 10 Several groups have sought to overcome these limitations by using chemical vapor deposition (CVD) to grow large-area, monolayer h-BN films. [11][12][13][14][15][16][17][18][19][20][21][22] CVD growth of h-BN has been accomplished using various precursors (e.g., ammonia borane, borazine, and diborane) on transition metal substrates (e.g., Cu, Ni, 23 Fe, 24 Ru, 25, 26 etc.). Of these h-BN growth substrates, we focus on Cu, as Cu has a high catalytic activity, 27 is inexpensive, and is the typical growth substrate 28 for conventional graphene CVD.Regarding h-BN growth precursors, volatile borazine-B3N3H6, isoelectronic with benzene-is far from an ideal choice, as borazine is hazardous and decomposes quickly even at room temperature. While borazine can pyrolyze and dehydrogenate 23, 25,29,30 to generate h-BN films, 13,17,19,20,22,31 partial dehydrogenation is common, [30] resulting in oligomeric BN compounds and aperiodic h-BN grain boundaries. 13,17 Finally, thin films of h-BN can also be grown from mixtures of diborane (B2H6) and ammonia (NH3...
Lithographic precision is as or more important than resolution. For decades, the semiconductor industry has been able to work with Ϯ5% precision. However, for other applications such as micronanoelectromechanical systems, optical elements, and biointerface applications, higher precision is desirable. Lyding et al. ͓Appl. Phys. Lett. 64, 11 ͑1999͔͒ have demonstrated that a scanning tunneling microscope can be used to remove hydrogen ͑H͒ atoms from a silicon ͑100͒ 2 ϫ 1 H-passivated surface through an electron stimulated desorption process. This can be considered e-beam lithography with a thin, self-developing resist. Patterned hydrogen layers do not make a robust etch mask, but the depassivated areas are highly reactive since they are unsatisfied covalent bonds and have been used for selective deposition of metals, oxides, semiconductors, and dopants. The depassivation lithography has shown the ability to remove single H atoms, suggesting the possibility of precise atomic patterning. This patterning process is being developed as part of a project to develop atomically precise patterned atomic layer epitaxy of silicon. However, significant challenges in sample preparation, tip technology, subnanometer pattern placement, and patterning throughput must be overcome before an automated atomic precision lithographic technology evolves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.