Ce O 2 – Si O 2 nanocomposite films were used as the gate dielectrics in organic thin film transistors (OTFTs) with pentacene active semiconductor. CeO2–SiO2 composite films exhibited a high dielectric capacitance of 57nF∕cm2 with exceptionally low leakage current. Good device characteristics were obtained with saturation at low operating voltages (∼2V) and with a field effect mobility of 0.84cm2V−1s−1, a threshold voltage of ∼0.25V, an on/off current ratio of 103, and a subthreshold slope of 0.3V∕decade, whereas the gate leakage current density is considerably lowered. These results should therefore increase the prospects of using OTFTs in low power applications such as portable devices.
In this study, pentacene thin‐film transistors (TFTs) operating at low voltages with high mobilities and low leakage currents are successfully fabricated by the surface modification of the CeO2–SiO2 gate dielectrics. The surface of the gate dielectric plays a crucial role in determining the performance and electrical reliability of the pentacene TFTs. Nearly hysteresis‐free transistors are obtained by passivating the devices with appropriate polymeric dielectrics. After coating with poly(4‐vinylphenol) (PVP), the reduced roughness of the surface induces the formation of uniform and large pentacene grains; moreover, –OH groups on CeO2–SiO2 are terminated by C6H5, resulting in the formation of a more hydrophobic surface. Enhanced pentacene quality and reduced hysteresis is observed in current–voltage (I–V) measurements of the PVP‐coated pentacene TFTs. Since grain boundaries and –OH groups are believed to act as electron traps, an OH‐free and smooth gate dielectric leads to a low trap density at the interface between the pentacene and the gate dielectric. The realization of electrically stable devices that can be operated at low voltages makes the OTFTs excellent candidates for future flexible displays and electronics applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.