In their 2011 paper on the AGT conjecture, Alba, Fateev, Litvinov and Tarnopolsky (AFLT) obtained a closed-form evaluation for a Selberg integral over the product of two Jack polynomials, thereby unifying the well-known Kadell and Hua-Kadell integrals. In this paper we use a variety of symmetric functions and symmetric function techniques to prove generalisations of the AFLT integral. These include (i) an An analogue of the AFLT integral, containing two Jack polynomials in the integrand; (ii) a generalisation of (i) for γ = 1 (the Schur or GUE case), containing a product of n + 1 Schur functions; (iii) an elliptic generalisation of the AFLT integral in which the role of the Jack polynomials is played by a pair of elliptic interpolation functions; (iv) an AFLT integral for Macdonald polynomials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.