Coffee extraction performed in an espresso machine is a process that depends on a delicate interplay between grind setting, coffee mass, water pressure and temperature, and beverage volume. Using a mathematical model based on the transport of solubles through a granular bed, paired with cafe-setting experiments, we elucidate the origin of inconsistencies in espresso production. Informed by the model, a protocol is proposed to systematically reduce coffee waste and beverage variation, resulting in highly reproducible shots.
The syntheses and X-ray crystal structures of six new self-assembled supramolecular As and Sb-containing cryptands are described. Analysis in the context of previously reported As(2)L(3) and Sb(2)L(3) cryptands reveals that small differences in ligand geometries result in significant differences in the helicity of the complexes and the stereochemistry of the metal coordination within the assembled complexes. Additionally, a new synthetic route is described which involves exposure of reactants to vacuum to help facilitate self-assembly.
We have prepared and characterized hydrosulfide-selective ChemFET devices based on a nitrile butadiene rubber membrane containing tetraoctylammonium nitrate as a chemical recognition element that is applied to commercially available field-effect transistors. The sensors have fast (120 s) reversible responses, selectivity over other biologically relevant thiol-containing species, detection limits of 8 mM, and a detection range from approximately 5 to 500 mM. Sensitivities are shown to be 53 mV per decade at pH 8. Use of this compact, benchtop sensor platform requires little training – only the ability to measure DC voltage, which can be accomplished with a conventional multimeter or a simple analog data acquisition device paired with a personal computer. To the best of our knowledge, this report describes the first example of direct potentiometric measurement of the hydrosulfide ion in water.
The reaction of AsCl3 with H2L (where L = a rigid dithiolate) results in the self-assembly of As2L2Cl2 supramolecular macrocycles. For ligands 4,4'-bis(mercaptomethyl)biphenyl (H2), 4,4'-bis(mercaptomethyl)-trans-stilbene (H2), and 1,4-dimethoxy-2,5-bis(mercaptomethyl)benzene (H2), the macrocyclic cavities of the resulting assemblies are large enough to host aromatic solvent molecules, as revealed by single crystal X-ray structures of the inclusion complexes. As2L2Cl(2) macrocycles form in solution as a mixture of diastereomers, but the diastereomers can be selectively crystallized and separated. Crystallization of syn- or anti-As(2)3(2)Cl2 can be controlled using host-guest interactions by the prudent choice of crystallization solvents. anti-As(2)3(2)Cl2 crystallizes exclusively from chloroform and benzene, while a [(syn-As(2)(2)Cl(2))(2).p-xylene] dimer crystallizes from p-xylene and a mixture of [(syn-As(2)3(2)Cl(2))(anti-As(2)3(2)Cl2) x toluene] and [(syn-As(2)3(2)Cl2)2 x toluene] dimers crystallize from toluene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.