Eye movement data has been extensively utilized by researchers interested in studying decision-making within the strategic setting of economic games. In this paper, we demonstrate that both deep learning and support vector machine classification methods are able to accurately identify participants’ decision strategies before they commit to action while playing games. Our approach focuses on creating scanpath images that best capture the dynamics of a participant’s gaze behaviour in a way that is meaningful for predictions to the machine learning models. Our results demonstrate a higher classification accuracy by 18% points compared to a baseline logistic regression model, which is traditionally used to analyse gaze data recorded during economic games. In a broader context, we aim to illustrate the potential for eye-tracking data to create information asymmetries in strategic environments in favour of those who collect and process the data. These information asymmetries could become especially relevant as eye-tracking is expected to become more widespread in user applications, with the seemingly imminent mass adoption of virtual reality systems and the development of devices with the ability to record eye movement outside of a laboratory setting.
Eye movement data has been extensively utilized by researchers interested in studying decision-making within the strategic setting of economic games. In this paper, we demonstrate both a deep learning and traditional machine learning classification method which are able to accurately identify a given participant's decision strategy before they commit to an action while playing games. Our approach focuses on creating scanpath images that best capture the dynamics of a participant's gaze behaviour during a given game in a way that is meaningful to the machine learning models. Our results demonstrate a higher classification accuracy compared to traditional methods of analysis applied to the same economic game environments by as much as 18 percentage points. In a broader context, we aim to illustrate the potential for eye-tracking data to create information asymmetries in strategic environments in favour of those who collect and process the data. These information asymmetries could become especially relevant as eye-tracking is expected to become more widespread in user applications, with the seemingly imminent mass adoption of virtual reality systems, and the development of devices with the ability to record eye movement outside of a laboratory setting.
Image classification models are becoming a popular method of analysis for scanpath classification. To implement these models, gaze data must first be reconfigured into a 2D image. However, this step gets relatively little attention in the literature as focus is mostly placed on model configuration. As standard model architectures have become more accessible to the wider eye-tracking community, we highlight the importance of carefully choosing feature representations within scanpath images as they may heavily affect classification accuracy. To illustrate this point, we create thirteen sets of scanpath designs incorporating different eye-tracking feature representations from data recorded during a task-based viewing experiment. We evaluate each scanpath design by passing the sets of images through a standard pre-trained deep learning model as well as a SVM image classifier. Results from our primary experiment show an average accuracy improvement of 25 percentage points between the best-performing set and one baseline set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.