In a year of challenges from the novel coronavirus, the new Queensland Human Rights Act was applied in unexpected ways. Its new complaints process was particularly tested by hotel quarantine restrictions. Nonetheless, geographic and demographic differences between Queensland and other human rights jurisdictions are also emerging as especially relevant to how human rights protection will be applied in the state, particularly a new Australian right to health and the cultural rights of Aboriginal and Torres Strait Islander peoples.
For successful printed circuit board (PCB) reverse engineering (RE), the resulting device must retain the physical characteristics and functionality of the original. Although the applications of RE are within the discretion of the executing party, establishing a viable, non-destructive framework for analysis is vital for any stakeholder in the PCB industry. A widely-regarded approach in PCB RE uses non-destructive x-ray computed tomography (CT) to produce three-dimensional volumes with several slices of data corresponding to multi-layered PCBs. However, the noise sources specific to x-ray CT and variability from designers hampers the thorough acquisition of features necessary for successful RE. This article investigates a deep learning approach as a successor to the current state-of-the-art for detecting vias on PCB x-ray CT images; vias are a key building block of PCB designs. During RE, vias offer an understanding of the PCB’s electrical connections across multiple layers. Our method is an improvement on an earlier iteration which demonstrates significantly faster runtime with quality of results comparable to or better than the current state-of-the-art, unsupervised iterative Hough-based method. Compared with the Hough-based method, the current framework is 4.5 times faster for the discrete image scenario and 24.1 times faster for the volumetric image scenario. The upgrades to the prior deep learning version include faster feature-based detection for real-world usability and adaptive post-processing methods to improve the quality of detections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.