Full-coverage pedestrian survey to record cultural features on unexplored archaeological landscapes is costly in terms of time, money, and personnel. Over the past two decades, researchers have implemented remote sensing and landscape data collection techniques using unmanned aerial vehicles (UAVs) to combat some of these burdens, but the initial cost of equipment, software, and processing power has hindered the ubiquitous implementation of UAV technology as an accessible companion tool to traditional archaeological survey. This article presents a free and open-source, technology-independent analytical framework for the collection and processing of UAV images to produce high-resolution digital terrain models limited only by the equipment available to the researcher. Results from the free and open-source protocol are directly compared to those produced using proprietary software to illustrate the capabilities of freely available data processing tools for UAV-collected images. By replicating the methods outlined here, researchers should be able to identify and target areas of interest to increase fieldwork efficiency, decrease costs of implementing this technology, and produce high-resolution digital terrain models to conduct spatial analyses that pursue a deeper understanding of cultural landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.