Interest and controversy surrounding the evolutionary origins of extremely halophilic Archaea has increased in recent years, due to the discovery and characterization of the Nanohaloarchaea and the Methanonatronarchaeia. Initial attempts in explaining the evolutionary placement of the two new lineages in relation to the classical Halobacteria (also referred to as Haloarchaea) resulted in hypotheses that imply the new groups share a common ancestor with the Haloarchaea. However, more recent analyses have led to a shift: the Nanohaloarchaea have been largely accepted as being a member of the DPANN superphylum, outside of the euryarchaeota; while the Methanonatronarchaeia have been placed near the base of the Methanotecta (composed of the class II methanogens, the Halobacteriales, and Archaeoglobales). These opposing hypotheses have far-reaching implications on the concepts of convergent evolution (unrelated groups evolve similar strategies for survival), genome reduction, and gene transfer. In this work, we attempt to resolve these conflicts with phylogenetic and phylogenomic data. We provide a robust taxonomic sampling of Archaeal genomes that spans the Asgardarchaea, TACK Group, euryarchaeota, and the DPANN superphylum. In addition, we assembled draft genomes from seven new representatives of the Nanohaloarchaea from distinct geographic locations. Phylogenies derived from these data imply that the highly conserved ATP synthase catalytic/non-catalytic subunits of Nanohaloarchaea share a sisterhood relationship with the Haloarchaea. We also employ a novel gene family distance clustering strategy which shows this sisterhood relationship is not likely the result of a recent gene transfer. In addition, we present and evaluate data that argue for and against the monophyly of the DPANN superphylum, in particular, the inclusion of the Nanohaloarchaea in DPANN.
Whole genome comparisons based on Average Nucleotide Identities (ANI) and the Genome-to-genome distance calculator have risen to prominence in rapidly classifying prokaryotic taxa using whole genome sequences. Some implementations have even been proposed as a new standard in species classification and have become a common technique for papers describing newly sequenced genomes. However, attempts to apply whole genome divergence data to delineation of higher taxonomic units and to phylogenetic inference have had difficulty matching those produced by more complex phylogenetic methods. We present a novel method for generating statistically supported phylogenies of archaeal and bacterial groups using a combined ANI and alignment fraction-based metric. For the test cases to which we applied the developed approach we obtained results comparable with other methodologies up to at least the family-level. The developed method uses non-parametric bootstrapping to gauge support for inferred groups. This method offers the opportunity to make use of whole-genome comparison data, that are already being generated, to quickly produce phylogenies including support for inferred groups. Additionally, the developed ANI methodology can assist classification of higher taxonomic groups.
Horizontal gene transfer (HGT) is central to prokaryotic evolution. However, little is known about the “scale” of individual HGT events. In this work, we introduce the first computational framework to help answer the following fundamental question: How often does more than one gene get horizontally transferred in a single HGT event? Our method, called HoMer, uses phylogenetic reconciliation to infer single-gene HGT events across a given set of species/strains, employs several techniques to account for inference error and uncertainty, combines that information with gene order information from extant genomes, and uses statistical analysis to identify candidate horizontal multi-gene transfers (HMGTs) in both extant and ancestral species/strains. HoMer is highly scalable and can be easily used to infer HMGTs across hundreds of genomes. We apply HoMer to a genome-scale dataset of over 22000 gene families from 103 Aeromonas genomes and identify a large number of plausible HMGTs of various scales at both small and large phylogenetic distances. Analysis of these HMGTs reveals interesting relationships between gene function, phylogenetic distance, and frequency of multi-gene transfer. Among other insights, we find that (i) the observed relative frequency of HMGT increases as divergence between genomes increases, (ii) HMGTs often have conserved gene functions, and (iii) rare genes are frequently acquired through HMGT. We also analyze in detail HMGTs involving the zonula occludens toxin and type III secretion systems. By enabling the systematic inference of HMGTs on a large scale, HoMer will facilitate a more accurate and more complete understanding of HGT and microbial evolution.
Interest and controversy surrounding the evolutionary origins of extremely halophilic Archaea has increased in recent years, due to the discovery and characterization of the Nanohaloarchaea and the Methanonatronarchaeia. Initial attempts in explaining the evolutionary placement of the two new lineages in relation to the classical Halobacteria (also referred to as Haloarchaea) resulted in hypotheses that imply the new groups share a common ancestor with the Haloarchaea.However, more recent analyses have led to a shift: the Nanohaloarchaea have been largely accepted as being a member of the DPANN superphylum, outside of the euryarchaeota; while the Methanonatronarchaeia have been placed near the base of the Methanotecta (composed of the class II methanogens, the halobacteriales, and archaeoglobales). These opposing hypotheses have far-reaching implications on the concepts of convergent evolution (unrelated groups evolve similar strategies for survival), genome reduction, and gene transfer. In this work, we attempt to resolve these conflicts with phylogenetic and phylogenomic data. We provide a robust taxonomic sampling of Archaeal genomes that spans the crenarchaeota, euryarchaeota, and the DPANN superphylum. In addition, we sampled and assembled 7 new representatives of the Nanohaloarchaea, from distinct geographic locations. Phylogenies derived from these data imply the highly conserved ATP synthase catalytic/non-catalytic subunits of Nanohaloarchaea share a sisterhood relationship with the Haloarchaea. This relationship, with strong support, was also observed for several other gene families. In addition, we present and evaluate data that argue for and against the monophyly of the DPANN superphylum. We employed phylogenetic reconstruction, constrained topology tests, and gene concordance factors to explore the support for and against the monophyly of the Haloarchaea, Nanohaloarchaea, and Methanonatronarchaeia.The evolutionary relationships of the three halophilic lineages remain unresolved; Figure 1 summarizes the current controversies. This lack of resolution can be, at least in part, due to biases that are known to complicate phylogenetics. The genomes of the Methanonatronarchaeia and Nanohaloarchaea are comparatively small with average genome sizes of <2.1Mb and ~1.1 Mb, and most genome entries in public databases are incomplete. The Haloarchaea are known to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.