We give an alternative description of the physical content of general relativity that does not require a Lorentz invariant spacetime. Instead, we find that gravity admits a dual description in terms of a theory where local size is irrelevant. The dual theory is invariant under foliation preserving 3-diffeomorphisms and 3D conformal transformations that preserve the 3-volume (for the spatially compact case). Locally, this symmetry is identical to that of Hořava-Lifshitz gravity in the high energy limit but our theory is equivalent to Einstein gravity. Specifically, we find that the solutions of general relativity, in a gauge where the spatial hypersurfaces have constant mean extrinsic curvature, can be mapped to solutions of a particular gauge fixing of the dual theory. Moreover, this duality is not accidental. We provide a general geometric picture for our procedure that allows us to trade foliation invariance for conformal invariance. The dual theory provides a new proposal for the theory space of quantum gravity.
We offer a new proposal for cosmic singularity resolution based upon a quantum cosmology with a unitary bounce. This proposal is illustrated via a novel quantization of a mini-superspace model in which there can be superpositions of the cosmological constant. This possibility leads to a finite, bouncing unitary cosmology. Whereas the usual Wheeler-DeWitt cosmology generically displays pathological behaviour in terms of non-finite expectation values and non-unitary dynamics, the finiteness and unitarity of our model are formally guaranteed. For classically singular models with a massless scalar field and cosmological constant, we show that well-behaved quantum observables can be constructed and generic solutions to the universal Schrödinger equation are singularity-free. Generic solutions of our model displays novel features including: i) superpositions of values of the cosmological constant; ii) universal effective physics due to non-trivial self-adjoint extensions of the Hamiltonian; and iii) bound 'Efimov universe' states for negative cosmological constant. The last feature provides a new platform for quantum simulation of the early universe. A companion paper provides detailed interpretation and analysis of particular cosmological solutions that display a cosmic bounce due to quantum gravitational effects, a well-defined FLRW limit far from the bounce, and a semi-classical turnaround point in the dynamics of the scalar field which resembles an effective inflationary epoch.
A physically consistent semi-classical treatment of black holes requires universality arguments to deal with the 'trans-Planckian' problem where quantum spacetime effects appear to be amplified such that they undermine the entire semi-classical modelling framework. We evaluate three families of such arguments in comparison with Wilsonian renormalization group universality arguments found in the context of condensed matter physics.Our analysis is framed by the crucial distinction between robustness and universality. Particular emphasis is placed on the quality whereby the various arguments are underpinned by 'integrated' notions of robustness and universality. Whereas the principal strength of Wilsonian universality arguments can be understood in terms of the presence of such integration, the principal weakness of all three universality arguments for Hawking radiation is its absence.
We propose an operator constraint equation for the wavefunction of the Universe that admits genuine evolution. While the corresponding classical theory is equivalent to the canonical decomposition of General Relativity, the quantum theory contains an evolution equation distinct from standard WheelerDeWitt cosmology. Furthermore, the local symmetry principle -and corresponding observables -of the theory have a direct interpretation in terms of a conventional gauge theory, where the gauge symmetry group is that of spatial conformal diffeomorphisms (that preserve the spatial volume of the Universe). The global evolution is in terms of an arbitrary parameter that serves only as an unobservable label for successive states of the Universe. Our proposal follows unambiguously from a suggestion of York whereby the independently specifiable initial data in the action principle of General Relativity is given by a conformal geometry and the spatial average of the York time on the spacelike hypersurfaces that bound the variation. Remarkably, such a variational principle uniquely selects the form of the constraints of the theory so that we can establish a precise notion of both symmetry and evolution in quantum gravity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.