The profitability of dairy businesses in southern Australia is closely related to the amount of feed consumed from perennial ryegrass-dominant pasture. Historically, the dairy industry has relied on improvements in pasture productivity and utilisation to support profitable increases in stocking rate and milk production per hectare. However, doubts surround the extent to which the industry can continue to rely on perennial ryegrass technology to provide the necessary productivity improvements required into the future. This paper describes the design and management of a dairy systems experiment at Terang in south-west Victoria (780-mm average annual rainfall) conducted over four lactations (June 2005–March 2009) to compare the production and profitability of two forage base options for non-irrigated dairy farms. These options were represented by two self-contained farmlets each milking 36 mixed-age, autumn-calving Holstein-Friesian cows at peak: (1) well managed perennial ryegrass pasture (‘Ryegrass Max’, or ‘RM’); and (2) perennial ryegrass plus complementary forages (‘CF’) including 15% of farmlet area under double cropping with annual species (winter cereal grown for silage followed by summer brassica for grazing on the same land) and an average of 25% of farmlet area in perennial pasture based on tall fescue for improved late spring–early summer feed supply. The design of these systems was informed by farming systems models (DairyMod, UDDER and Redsky), which were used to estimate the effects of introducing different forage options on farm profitability. The design of the CF system was selected based on modelled profitability increases assuming that all forage components could be managed to optimise forage production and be effectively integrated to optimise milk production per cow. Using the historical ‘average’ pasture growth curve for the Terang district and a mean milk price of $3.71 per kg milk solids, the models estimated that the return on assets of the RM and CF systems would be 9.4 and 15.0%, respectively. The objectives of the experiment described here were to test whether or not such differences in profitability could be achieved in practice, and to determine the risks associated with including complementary forages on a substantial proportion of the effective farm area. Key results of the experiment are presented in subsequent papers.
FutureDairy is a national, multidisciplinary project designed to assist Australian dairy farmers to manage future challenges. FutureDairy is exploring technical, economic and social aspects of technology adoption through an innovative approach that combines methodologies of social research (‘People’), extension (‘System’) and technical research (‘Science’). The technologies being investigated revolve around increasing forage production per unit of land through a complementary forage rotation; evaluating the most efficient use of brought-in feed to increase milk production per ha; and, the incorporation of automatic milking and other technological innovations that would either reduce labour input or allow more precise agriculture. The central strategy of FutureDairy is to utilise ‘knowledge partnerships’ to co-develop knowledge around each of the key areas of investigation; thus a key feature of the project is its linkage with commercial ‘partner’ farmers that explore similar questions to those being investigated at Elizabeth Macarthur Agricultural Institute (NSW Department of Primary Industries), where the technical research is being undertaken. This paper focuses on early findings from the forages module. Work thus far has shown that forage yields in excess of 40 t DM/ha.year are achievable. However, the practicalities of implementing this technology on-farm have already identified new and diverse issues that, unless understood, will jeopardise its effective adaptation by farmers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.