The article develops the notion of covariational reasoning and proposes a framework for describing the mental actions involved in applying covariational reasoning when interpreting and representing dynamic function events. It also reports on an investigation of high-performing second semester calculus students' ability to reason about covarying quantities in dynamic situations. The study revealed that these students were able to construct images of a function's dependent variable changing in tandem with the imagined change of the independent variable, and in some situations, were able to construct images of rate of change for contiguous intervals of a function's domain. However, students appeared to have difficulty forming images of continuously changing rate and were unable to accurately represent and interpret increasing and decreasing rate for dynamic function situations.
In his 1976 book, Proofs and Refutations, Lakatos presents a collection of case studies to illustrate methods of mathematical discovery in the history of mathematics. In this paper, we reframe these methods in ways that we have found make them more amenable for use as a framework for research on learning and teaching mathematics. We present an episode from an undergraduate abstract algebra classroom to illustrate the guided reinvention of mathematics through processes that strongly parallel those described by Lakatos. Our analysis suggests that the constructs described by Lakatos can provide a useful framework for making sense of the mathematical activity in classrooms where students are actively engaged in the development of mathematical ideas and provide design heuristics for instructional approaches that support the learning of mathematics through the process of guided reinvention.
The purpose of this article is to elaborate Cottrill et al.'s (1996) conceptual framework of limit, an explanatory model of how students might come to understand the limit concept. Drawing on a retrospective analysis of 2 teaching experiments, we propose 2 theoretical constructs to account for the students' success in formulating and understanding a definition of limit. The 1st construct relates to the need for students to move away from their tendency to attend first to the input variable of the function. The 2nd construct relates to the need for students to overcome the practical impossibility of completing an infinite process. Together, these 2 theoretical constructs build on Cottrill et al.'s work, resulting in a revised conceptual framework of limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.