Near-fatal classic heat stroke is associated with multiorgan dysfunction. A high percentage of patients had infection at presentation. A high mortality rate was observed during acute hospitalization and at 1 year. In addition, substantial functional impairment at discharge persisted 1 year. The degree of functional disability correlated highly with survival at 1 year.
We tested the hypothesis that prolonged serum deprivation would allow a subset of cultured airway myocytes to reacquire the abundant contractile protein content, marked shortening capacity, and elongated morphology characteristic of contractile cells within intact tissue. Passage 1 or 2 canine tracheal smooth muscle (SM) cells were grown to confluence, then serum deprived for up to 19 days. During serum deprivation, two differentiation pathways emerged. One-sixth of the cells developed an elongated morphology and aligned into bundles. Elongated myocytes contained cables of contractile myofilaments, dense bodies, gap junctions, and membrane caveoli, ultrastructural features of contractile SM in tissue. These cells immunostained intensely for SM α-actin, SM myosin heavy chain (MHC), and SM22 (an SM-specific actin-binding protein), and Western analysis of culture lysates disclosed 1.8 (SM α-actin)-, 7.7 (SM MHC)-, and 5.8 (SM22)-fold protein increases during serum deprivation. Immunoreactive M3 muscarinic receptors were present in dense foci distributed throughout elongated, SM MHC-positive myocytes. ACh (10−3 M) induced a marked shortening (59.7 ± 14.4% of original length) in 62% of elongated myocytes made semiadherent by gentle proteolytic digestion, and membrane bleb formation (a consequence of contraction) occurred in all stimulated cells that remained adherent and so did not shorten. Cultured airway myocytes that did not elongate during serum deprivation instead became short and flattened, lost immunoreactivity for contractile proteins, lacked the M3 muscarinic-receptor expression pattern seen in elongated cells, and exhibited no contractile response to ACh. Thus we demonstrate that prolonged serum deprivation induces distinct differentiation pathways in confluent cultured tracheal myocytes and that one subpopulation acquires an unequivocally functional contractile phenotype in which structure and function resemble contractile myocytes from intact tissue.
SM22 is a 201-amino acid actin-binding protein expressed at high levels in smooth muscle cells. It has structural homology to calponin, but how SM22 binds to actin remains unknown. We performed site-directed mutagenesis to generate a series of NH(2)-terminal histidine (His)-tagged mutants of human SM22 in Escherichia coli and used these to analyze the functional importance of potential actin binding domains. Purified full-length recombinant SM22 bound to actin in vitro, as demonstrated by cosedimentation assay. Binding did not vary with calcium concentration. The COOH-terminal domain of SM22 is required for actin affinity, because COOH terminally truncated mutants [SM22-(1-186) and SM22-(1-166)] exhibited markedly reduced cosedimentation with actin, and no actin binding of SM22-(1-151) could be detected. Internal deletion of a putative actin binding site (154-KKAQEHKR-161) partially prevented actin binding, as did point mutation to neutralize either or both pairs of positively charged residues at the ends of this region (KK154LL and/or KR160LL). Internal deletion of amino acids 170-180 or 170-186 also partially or almost completely inhibited actin cosedimentation, respectively. Of the three consensus protein kinase C or casein kinase II phosphorylation sites in SM22, only Ser-181 was readily phosphorylated by protein kinase C in vitro, and such phosphorylation greatly decreased actin binding. Substitution of Ser-181 to aspartic acid (to mimic serine phosphorylation) also reduced actin binding. Immunostains of transiently transfected airway myocytes revealed that full-length NH(2)-terminal FLAG-tagged SM22 colocalizes with actin filaments, whereas FLAG-SM22-(1-151) does not. These data confirm that SM22 binds to actin in vitro and in vivo and, for the first time, demonstrate that multiple regions within the COOH-terminal domain are required for full actin affinity.
Increased airway smooth muscle in airway remodeling results from myocyte proliferation and hypertrophy. Skeletal and vascular smooth muscle hypertrophy is induced by phosphatidylinositide-3 kinase (PI(3) kinase) via mammalian target of rapamycin (mTOR) and p70S6 kinase (p70S6K). We tested the hypothesis that this pathway regulates contractile protein accumulation in cultured canine airway myocytes acquiring an elongated contractile phenotype in serum-free culture. In vitro assays revealed a sustained activation of PI(3) kinase and p70S6K during serum deprivation up to 12 d, with concomitant accumulation of SM22 and smooth muscle myosin heavy chain (smMHC) proteins. Immunocytochemistry revealed that activation of PI3K/mTOR/p70S6K occurred almost exclusively in myocytes that acquire the contractile phenotype. Inhibition of PI(3) kinase or mTOR with LY294002 or rapamycin blocked p70S6K activation, prevented formation of large elongated contractile phenotype myocytes, and blocked accumulation of SM22 and smMHC. Inhibition of MEK had no effect. Steady-state mRNA abundance for SM22 and smMHC was unaffected by blocking p70S6K activation. These studies provide primary evidence that PI(3) kinase and mTOR activate p70S6K in airway myocytes leading to the accumulation of contractile apparatus proteins, differentiation, and growth of large, elongated contractile phenotype airway smooth muscle cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.