Mitochondrial dysfunctions cause numerous human disorders. A platform technology based on biodegradable polymers for carrying bioactive molecules to the mitochondrial matrix could be of enormous potential benefit in treating mitochondrial diseases. Here we report a rationally designed mitochondria-targeted polymeric nanoparticle (NP) system and its optimization for efficient delivery of various mitochondria-acting therapeutics by blending a targeted poly(D,L-lactic-co-glycolic acid)-block (PLGA-b)-poly(ethylene glycol) (PEG)-triphenylphosphonium (TPP) polymer (PLGA-b-PEG-TPP) with either nontargeted PLGA-b-PEG-OH or PLGA-COOH. An optimized formulation was identified through in vitro screening of a library of charge-and size-varied NPs, and mitochondrial uptake was studied by qualitative and quantitative investigations of cytosolic and mitochondrial fractions of cells treated with blended NPs composed of PLGA-b-PEG-TPP and a triblock copolymer containing a fluorescent quantum dot, PLGA-b-PEG-QD. The versatility of this platform was demonstrated by studying various mitochondria-acting therapeutics for different applications, including the mitochondria-targeting chemotherapeutics lonidamine and α-tocopheryl succinate for cancer, the mitochondrial antioxidant curcumin for Alzheimer's disease, and the mitochondrial uncoupler 2,4-dinitrophenol for obesity. These biomolecules were loaded into blended NPs with high loading efficiencies. Considering efficacy, the targeted PLGA-b-PEG-TPP NP provides a remarkable improvement in the drug therapeutic index for cancer, Alzheimer's disease, and obesity compared with the nontargeted construct or the therapeutics in their free form. This work represents the potential of a single, programmable NP platform for the diagnosis and targeted delivery of therapeutics for mitochondrial dysfunction-related diseases.nanocarrier | organelle | nanomedicine | drug trafficking
Chemoresistance of cisplatin therapy is related to extensive repair of cisplatin-modified DNA in the nucleus by the nucleotide excision repair (NER). Delivering cisplatin to the mitochondria to attack mitochondrial genome lacking NER machinery can lead to a rationally designed therapy for metastatic, chemoresistant cancers and might overcome the problems associated with conventional cisplatin treatment. An engineered hydrophobic mitochondria-targeted cisplatin prodrug, Platin-M, was constructed using a strainpromoted alkyne-azide cycloaddition chemistry. Efficient delivery of Platin-M using a biocompatible polymeric nanoparticle (NP) based on biodegradable poly(lactic-co-glycolic acid)-block-polyethyleneglycol functionalized with a terminal triphenylphosphonium cation, which has remarkable activity to target mitochondria of cells, resulted in controlled release of cisplatin from Platin-M locally inside the mitochondrial matrix to attack mtDNA and exhibited otherwise-resistant advanced cancer sensitive to cisplatin-based chemotherapy. Identification of an optimized targeted-NP formulation with brain-penetrating properties allowed for delivery of Platin-M inside the mitochondria of neuroblastoma cells resulting in ∼17 times more activity than cisplatin. The remarkable activity of Platin-M and its targeted-NP in cisplatin-resistant cells was correlated with the hyperpolarization of mitochondria in these cells and mitochondrial bioenergetics studies in the resistance cells further supported this hypothesis. This unique dual-targeting approach to controlled mitochondrial delivery of cisplatin in the form of a prodrug to attack the mitochondrial genome lacking NER machinery and in vivo distribution of the delivery vehicle in the brain suggested previously undescribed routes for cisplatinbased therapy.click chemistry | brain cancer | OXPHOS | pharmacokinetics T he cellular powerhouse, mitochondria, are implicated in the process of carcinogenesis because of their vital roles in energy production and apoptosis. Mitochondria are the key players in generating the cellular energy through oxidative phosphorylation (OXPHOS) that produces reactive oxygen species (ROS) as by-products. Mitochondrial DNA (mtDNA) plays significant roles in cell death and metastatic competence. The close proximity of mtDNA to the ROS production site makes this genome vulnerable to oxidative damage. Mitochondrial dysfunction and associated mtDNA depletion possibly reversibly control epigenetic changes in the nucleus that contributes to cancer development (1). Thus, targeting mtDNA could lead to novel and effective therapies for aggressive cancers. Cisplatin, a Food and Drug Administration-approved chemotherapeutic agent, is most extensively characterized as a DNA-damaging agent and the cytotoxicity of cisplatin is attributed to the ability to form interstrand and intrastrand nuclear DNA (nDNA) cross-links (2). The nucleotide excision repair (NER) pathway plays major roles in repairing cisplatin-nDNA adducts (3). Resistance to cisplatin can result fr...
Cancer-associated inflammation induces tumor progression to the metastatic stage, thus indicating that a chemo-anti-inflammatory strategy is of interest for the management of aggressive cancers. The platinum(IV) prodrug Platin-A was designed to release cisplatin and aspirin to ameliorate the nephrotoxicity and ototoxicity caused by cisplatin. Platin-A exhibited anticancer and anti-inflammatory properties which are better than a combination of cisplatin and aspirin. These findings highlight the advantages of combining anti-inflammatory treatment with chemotherapy when both the drugs are delivered in the form of a single prodrug.
Atherosclerosis remains one of the most common causes of death in the United States and throughout the world because of the lack of early detection. Macrophage apoptosis is a major contributor to the instability of atherosclerotic lesions. Development of an apoptosis targeted high-density lipoprotein (HDL)-mimicking nanoparticle (NP) to carry contrast agents for early detection of vulnerable plaques and the initiation of preventative therapies that exploit the vascular protective effects of HDL can be attractive for atherosclerosis. Here, we report the construction of a synthetic, biodegradable HDL-NP platform for detection of vulnerable plaques by targeting the collapse of mitochondrial membrane potential that occurs during apoptosis. This HDL mimic contains a core of biodegradable poly(lactic-co-glycolic acid), cholesteryl oleate, and a phospholipid bilayer coat that is decorated with triphenylphosphonium (TPP) cations for detection of mitochondrial membrane potential collapse. The lipid layer provides the surface for adsorption of apolipoprotein (apo) A-I mimetic 4F peptide, and the core contains diagnostically active quantum dots (QDs) for optical imaging. In vitro uptake, detection of apoptosis, and cholesterol binding studies indicated promising detection ability and therapeutic potential of TPP-HDL-apoA-I-QD NPs. In vitro studies indicated the potential of these NPs in reverse cholesterol transport. In vivo biodistribution and pharmacokinetics indicated favorable tissue distribution, controlled pharmacokinetic parameters, and significant triglyceride reduction for i.v.-injected TPP-HDL-apoA-I-QD NPs in rats. These HDL NPs demonstrate excellent biocompatibility, stability, nontoxic, and nonimmunogenic properties, which prove to be promising for future translation in early plaque diagnosis and might find applications to prevent vulnerable plaque progression.espite advances in both primary and secondary prevention, atherosclerosis (1) remains one of the leading causes of morbidity and mortality in the Western world because of the lack of early detection and targeted therapy. In general, atherosclerosis is a result of excess cholesterol circulating in the bloodstream. At the cellular level, atherosclerotic plaque formation is caused by cholesterol consumption and foam cell formation by macrophages situated within the intimal layers of the arteries (2). The term "vulnerable plaque" designates a plaque at high risk of disruption leading to thrombosis. Identification of vulnerable plaques before the thrombus formation is essential to enable the development of treatment modalities. One intriguing possibility for the development of image-guided therapies of coronary heart diseases (CHDs) is through high-density lipoproteins (HDLs), because of its function in the reverse cholesterol transport (RCT) pathway (3, 4). Along with apolipoprotein (apo) E, which promotes cholesterol efflux from foam cells, apoA-I-containing HDL facilitate the transport of cholesterol from lesions. Development of targeted HDL nanoparticles ...
Tumor growth is fueled by the use of glycolysis, which normal cells use only in the scarcity of oxygen. Glycolysis makes tumor cells resistant to normal death processes. Targeting this unique tumor metabolism can provide an alternative strategy to selectively destroy the tumor, leaving normal tissue unharmed. The orphan drug dichloroacetate (DCA) is a mitochondrial kinase inhibitor that has the ability to show such characteristics. However, its molecular form shows poor uptake and bioavailability and limited ability to reach its target mitochondria. Here, we describe a targeted molecular scaffold for construction of a multiple DCA loaded compound, Mito-DCA, with three orders of magnitude enhanced potency and cancer cell specificity compared to DCA. Incorporation of a lipophilic triphenylphosphonium cation through a biodegradable linker in Mito-DCA allowed for mitochondria targeting. Mito-DCA did not show any significant metabolic effects toward normal cells but tumor cells with dysfunctional mitochondria were affected by Mito-DCA, which caused a switch from glycolysis to glucose oxidation and subsequent cell death via apoptosis. Effective delivery of DCA to the mitochondria resulted in significant reduction in lactate levels and played important roles in modulating dendritic cell (DC) phenotype evidenced by secretion of interleukin-12 from DCs upon activation with tumor antigens from Mito-DCA treated cancer cells. Targeting mitochondrial metabolic inhibitors to the mitochondria could lead to induction of an efficient antitumor immune response, thus introducing the concept of combining glycolysis inhibition with immune system to destroy tumor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.